
1	

Task Farming in Contrail

contrail is co-funded by the EC
7th Framework Programme

contrail-project.eu

The Contrail Project	

contrail-project.eu

ConPaaS
  Contrail’s Platform as a Service

  PHP-based Web applications
  MySQL
  MapReduce
  Task Farming
  XtreemFS files system

  Accessible via a common Web GUI

contrail-project.eu

ConPaaS GUI

contrail-project.eu

ConPaaS Service Architecture

Today:
Task farming

service

contrail-project.eu

Task Farming
  Dominant application type in grids

  over 75% of all submitted tasks
  over 90% of the total CPU-time consumption
  [Iosup,Epema et al.]

  High-throughput applications (Condor style)
  Parameter sweep

  Traditional execution model “grab and run”
  Get as many machines as possible
  Computation for free, best-effort execution
  Desktop grids, clusters, …

contrail-project.eu
7	

 Elastic computing, get exactly the machines you need,
exactly when you need them...	

 Well, did we mention you have to pay for the hour?	

The promise of the cloud

contrail-project.eu
8	

 Small Instance, $0.085 per hour	

  1.7 GB of memory, 1 EC2 Compute Unit (ECU)���

  High-memory extra large, $0.50 per hour	

  17.1 GB memory, 6.5 ECU ���

  High CPU medium, $0.17 per hour	

  1.7 GB of memory, 5 EC2 Compute Units	

Which one is faster for my application???	

Which one is cost efficient???	

“Quality of Service”

contrail-project.eu

Bag Characteristics
  Many independent tasks

  All tasks are always ready to run
  Runtimes are unknown to the user
  Tasks have some (unknown) runtime distribution
  Simplifications:

  Tasks can be aborted/restarted
  No costs of input/output files (ongoing work)
  No disruptive performance changes across

clouds (e.g., with cache sizes that delay
some tasks but not the others)

contrail-project.eu
10	

  A cloud offering provides machines of certain properties
like CPU speed and memory	

  All machines in a cloud offering are homogeneous	

  There is an upper limit of machines per cloud that a user

can get	

  A machine is charged per Accountable Time Unit (ATU);

1 hour, for example	

  We call a cloud offering (machine type, price, max.

number) a cluster	

  We are HPC guys, after all...	

Cloud Characteristics	

contrail-project.eu
11	

  We are on a budget.	

  We know nothing. ���

  We want to:	

  Run all tasks from our bag on (cloud) clusters,

without spending more than our budget	

  Allocate/release machines dynamically while learning

how fast our tasks execute on the different clusters	

  If we learn that our budget is too low, give up	

  Minimize makespan of the whole bag, if we can make

it within budget	

What's the (scheduling) problem?	

contrail-project.eu
12	

  Self scheduling tasks	

  Reconfiguring cluster configurations	

BaTS: Budget-aware task scheduler	

contrail-project.eu

The BaTS Story
  “Every good story has a beginning, a middle part, and

an end.”
  With BaTS:

  Runtime and budget estimation
  Throughput phase
  Tail phase

contrail-project.eu

Runtime Estimation
  Statistics for sampling with replacement:

  Bag of tasks can be described with pretty good accuracy
from a small sample

  We collect average and variance

contrail-project.eu

Runtime Estimation
  For each cluster (cloud machine type) we need a

sample of +/- 30 completed tasks
  (drawn at random)

  This might be costly and/or time consuming

contrail-project.eu

Compact Sampling
Assume:	

g(x) = a * f(x)+b	

Linear Regression:	

Replicate 7 tasks	

Distribute rest of
sample (30-7=23)
over all clusters	

Map samples to
other clusters	

contrail-project.eu
17	

 From the average speed of each cluster, (in tasks per minute) we
can compute estimates for makespan (Te) and cost (Be) for a
configuration from nodes of multiple clusters: ���

 We minimize Te while keeping Be <= B using	

 a modified Bounded Knapsack Problem (BKP)	

  The BKP can be solved in pseudo-polynomial time, as a���
0-1 knapsack problem via linear programming	

 BaTS chooses the configuration with minimal Te for Be <= B	

Cluster Configuration	

contrail-project.eu

Budget Estimation
  User must make the trade-off between cost and

completion time
  BaTS provides the user with choice (cost, time), using

cluster configurations computed from the sampling
phase:

  Cheapest makespan
  Cheapest makespan +10/20% cost
  Fastest makespan -10/20% cost
  Fastest makespan

  (more options are possible)
  Each configuration (in fact) consists of the numbers of

machines per cluster

contrail-project.eu
19	

  Self scheduling tasks	

  Reconfiguring cluster configurations

regularly	

BaTS: Throughput Phase	

contrail-project.eu

Progress Monitoring
  BaTS starts from the user-selected, initial configuration
  At regular intervals (e.g., 5 minutes), BaTS re-evaluates

the configuration
1.  Update average and variance per cluster
2.  Re-evaluate the machine configuration

  Execution on real machines adds some complexity:	

  Individually requested from the cloud provider(s), ���

startup time before being ready	

  Each machine has its own end of the next ATU

contrail-project.eu

Re-evaluate the
machine configuration

  Solve the remaining problem
  Less tasks
  Less money left
  Track already-paid time left on machines

  If budget violation expected, get more machines with
better price/performance ratio, and drop others

  If makespan violation expected, get more fast machines,
and drop others

  If both budget and makespan violations expected, call
mummy the user

contrail-project.eu

Fluid vs.Discrete Models
  BaTS (the BKP solver) allocates machines per full ATU
  Assumes a “fluid” model of computing time

contrail-project.eu

Fluid vs.Discrete Models
  Tasks, however, are sequential, cannot be split across

“leftover” cycles
  Tasks on machines in final ATU:

contrail-project.eu

The End is Near!
  The tail phase needs some special consideration
  Bags with high variance may overrun predicted

makespan (and thus budget)
  Even without overrunning, towards the end machines

remain idle

contrail-project.eu

BaTS' Tail Phase
  As soon as a machine can not be assigned a task,

BaTS switches to the tail phase:
  Replicate running tasks onto idle machines

  Which task to replicate?
  The one that will terminate last!

  OK, how do we know?
  Estimate completion time based actual runtime:

  “Task i is running for 12 minutes now, what is its
expected completion time, given the observed
average and variance of the bag?”

  Estimate completion time onto the idle machine (starting
from scratch)

  If shorter, replicate

contrail-project.eu

BaTS' Tail Phase (2/2)
  Do we need to start earlier?
  In the throughput phase, the average runtime

determines the speed.
  According to the central limit theorem, this no longer holds,

once the population is smaller than a threshold
(the same as the sample size in the beginning, +/- 30)

  With the threshold reached, BaTS migrates tasks to
faster machines.

  Same as replication, but original task is killed.
  This frees a slow machine for a hopefully shorter task.

contrail-project.eu

BaTS' Tail Phase Evaluation
  We compare the following options:

  No tail phase optimization.
  Stochastic replication

(based on completion time prediction)
  Replication with perfect knowledge

(theoretical optimum)
  Replication with random task selection

(no knowledge)
  Replication plus migration

contrail-project.eu

Types of Bags Used
  Normal distribution
  Truncated Levy distribution (heavy tailed)
  Multi-modal distribution (real world data)

contrail-project.eu

Normal Distribution

“low is good”	

•  Simulator runs	

•  30 bags each	

•  30 runs each	

contrail-project.eu

Heavy-tailed Distribution

contrail-project.eu

Multi-modal Distribution

contrail-project.eu

Tail Phase Findings
  Doing “nothing” is the only bad option
  Replication works fine

  Even with random selection
  But has higher error rate

  Additional migration seems not to be worth the effort
  The price we pay (kill running task) seems to

outweigh the benefits

contrail-project.eu

BaTS on the Amazon Spot Market
  So far, we used “on demand” instances

  Fixed price per hour
  Amazon spot market:

  Same (on demand) machine types at different prices
  Users “bid” a price for a machine (of a type)
  If the bid is >= the current spot price, user gets the

machine
  If the spot prices exceeds the bid, the user is

kicked out without prior notice
  (and is reimbursed for the aborted hour)

contrail-project.eu

Spot Market: pros and cons
  Pro:

  We might get machines cheaper
  In practice, spot prices hardly ever change (boring)

  Con:
  Tasks might get aborted

  (we also do this ourselves, no problem)
  Total budget fluctuates
  Getting a spot instance takes +/- 8 minutes

(before the booting starts)

contrail-project.eu

BaTS Sampling for the Spot Market

New research problem:	

What is a good bidding strategy for spot machines?	

contrail-project.eu

Bidding Strategies
  Maximum price

  Determine the max price at which a spot instance is
more cost efficient than the most profitable
on-demand instance:

  Current price
  Always get spot instances, the cheapest option at

the moment of execution
  Average price

  Literally the average between “current” and
“maximum”, in between the two extremes

contrail-project.eu

Spot Market Estimations
  Using max. 10 instances each of t1.micro, m1.small,

m1.medium
  Bag with 18000 tasks (average 32, 15, and 8 seconds)
  Max. bid used: $0.02 for t1.micro, $0.007 for m1.small

and $0.015 for m1.medium

No clear “winner”
strategy. The user
simply gets more

options…	

contrail-project.eu

Spot Market Runs

contrail-project.eu

Spot Market Findings
  It is too early for final conclusions.
  Opens more choices for the cost-savvy user.
  The current implementation only uses the current

spot prices (no history)
  Taking long-term spot prices into account, user

might opt for a hard cost limit:
  Place a low bid and wait until the price drops
  Interrupt the whole computation if price goes up

during the computation

contrail-project.eu

Conlusions
  BaTS gives the user control over and choice from

several cloud offers
  Run cheaper and longer
  Or run faster with higher budget

  Learning stochastic properties of tasks works well in the
absence of runtime estimates

  Next steps:
  Fully integrate file I/O
  Handle fluctuating node performance (ongoing)
  Support workflows (tasks with dependencies)
  Fault tolerance Resilience
  Dig deeper into spot market options

contrail-project.eu
41	

Questions?

contrail-project.eu
42	

Funded under: FP7 (Seventh Framework Programme)	

Area: Internet of Services, Software & virtualization (ICT-2009.1.2)	

Project reference: 257438	

Total cost: 11,29 million euro	

EU contribution: 8,3 million euro	

Execution: From 2010-10-01 till 2013-09-30	

Duration: 36 months	

Contract type: Collaborative project (generic)	

contrail is co-funded by the
EC 7th Framework Programme

