
1	

Task Farming in Contrail

contrail is co-funded by the EC
7th Framework Programme

contrail-project.eu

The Contrail Project	

contrail-project.eu

ConPaaS
  Contrail’s Platform as a Service

  PHP-based Web applications
  MySQL
  MapReduce
  Task Farming
  XtreemFS files system

  Accessible via a common Web GUI

contrail-project.eu

ConPaaS GUI

contrail-project.eu

ConPaaS Service Architecture

Today:
Task farming

service

contrail-project.eu

Task Farming
  Dominant application type in grids

  over 75% of all submitted tasks
  over 90% of the total CPU-time consumption
  [Iosup,Epema et al.]

  High-throughput applications (Condor style)
  Parameter sweep

  Traditional execution model “grab and run”
  Get as many machines as possible
  Computation for free, best-effort execution
  Desktop grids, clusters, …

contrail-project.eu7	

 Elastic computing, get exactly the machines you need,
exactly when you need them...	

 Well, did we mention you have to pay for the hour?	

The promise of the cloud

contrail-project.eu8	

 Small Instance, $0.085 per hour	

  1.7 GB of memory, 1 EC2 Compute Unit (ECU)���

  High-memory extra large, $0.50 per hour	

  17.1 GB memory, 6.5 ECU ���

  High CPU medium, $0.17 per hour	

  1.7 GB of memory, 5 EC2 Compute Units	

Which one is faster for my application???	

Which one is cost efficient???	

“Quality of Service”

contrail-project.eu

Bag Characteristics
  Many independent tasks

  All tasks are always ready to run
  Runtimes are unknown to the user
  Tasks have some (unknown) runtime distribution
  Simplifications:

  Tasks can be aborted/restarted
  No costs of input/output files (ongoing work)
  No disruptive performance changes across

clouds (e.g., with cache sizes that delay
some tasks but not the others)

contrail-project.eu10	

  A cloud offering provides machines of certain properties
like CPU speed and memory	

  All machines in a cloud offering are homogeneous	

  There is an upper limit of machines per cloud that a user

can get	

  A machine is charged per Accountable Time Unit (ATU);

1 hour, for example	

  We call a cloud offering (machine type, price, max.

number) a cluster	

  We are HPC guys, after all...	

Cloud Characteristics	

contrail-project.eu11	

  We are on a budget.	

  We know nothing. ���

  We want to:	

  Run all tasks from our bag on (cloud) clusters,

without spending more than our budget	

  Allocate/release machines dynamically while learning

how fast our tasks execute on the different clusters	

  If we learn that our budget is too low, give up	

  Minimize makespan of the whole bag, if we can make

it within budget	

What's the (scheduling) problem?	

contrail-project.eu12	

  Self scheduling tasks	

  Reconfiguring cluster configurations	

BaTS: Budget-aware task scheduler	

contrail-project.eu

The BaTS Story
  “Every good story has a beginning, a middle part, and

an end.”
  With BaTS:

  Runtime and budget estimation
  Throughput phase
  Tail phase

contrail-project.eu

Runtime Estimation
  Statistics for sampling with replacement:

  Bag of tasks can be described with pretty good accuracy
from a small sample

  We collect average and variance

contrail-project.eu

Runtime Estimation
  For each cluster (cloud machine type) we need a

sample of +/- 30 completed tasks
  (drawn at random)

  This might be costly and/or time consuming

contrail-project.eu

Compact Sampling
Assume:	

g(x) = a * f(x)+b	

Linear Regression:	

Replicate 7 tasks	

Distribute rest of
sample (30-7=23)
over all clusters	

Map samples to
other clusters	

contrail-project.eu17	

 From the average speed of each cluster, (in tasks per minute) we
can compute estimates for makespan (Te) and cost (Be) for a
configuration from nodes of multiple clusters: ���

 We minimize Te while keeping Be <= B using	

 a modified Bounded Knapsack Problem (BKP)	

  The BKP can be solved in pseudo-polynomial time, as a���
0-1 knapsack problem via linear programming	

 BaTS chooses the configuration with minimal Te for Be <= B	

Cluster Configuration	

contrail-project.eu

Budget Estimation
  User must make the trade-off between cost and

completion time
  BaTS provides the user with choice (cost, time), using

cluster configurations computed from the sampling
phase:

  Cheapest makespan
  Cheapest makespan +10/20% cost
  Fastest makespan -10/20% cost
  Fastest makespan

  (more options are possible)
  Each configuration (in fact) consists of the numbers of

machines per cluster

contrail-project.eu19	

  Self scheduling tasks	

  Reconfiguring cluster configurations

regularly	

BaTS: Throughput Phase	

contrail-project.eu

Progress Monitoring
  BaTS starts from the user-selected, initial configuration
  At regular intervals (e.g., 5 minutes), BaTS re-evaluates

the configuration
1.  Update average and variance per cluster
2.  Re-evaluate the machine configuration

  Execution on real machines adds some complexity:	

  Individually requested from the cloud provider(s), ���

startup time before being ready	

  Each machine has its own end of the next ATU

contrail-project.eu

Re-evaluate the
machine configuration

  Solve the remaining problem
  Less tasks
  Less money left
  Track already-paid time left on machines

  If budget violation expected, get more machines with
better price/performance ratio, and drop others

  If makespan violation expected, get more fast machines,
and drop others

  If both budget and makespan violations expected, call
mummy the user

contrail-project.eu

Fluid vs.Discrete Models
  BaTS (the BKP solver) allocates machines per full ATU
  Assumes a “fluid” model of computing time

contrail-project.eu

Fluid vs.Discrete Models
  Tasks, however, are sequential, cannot be split across

“leftover” cycles
  Tasks on machines in final ATU:

contrail-project.eu

The End is Near!
  The tail phase needs some special consideration
  Bags with high variance may overrun predicted

makespan (and thus budget)
  Even without overrunning, towards the end machines

remain idle

contrail-project.eu

BaTS' Tail Phase
  As soon as a machine can not be assigned a task,

BaTS switches to the tail phase:
  Replicate running tasks onto idle machines

  Which task to replicate?
  The one that will terminate last!

  OK, how do we know?
  Estimate completion time based actual runtime:

  “Task i is running for 12 minutes now, what is its
expected completion time, given the observed
average and variance of the bag?”

  Estimate completion time onto the idle machine (starting
from scratch)

  If shorter, replicate

contrail-project.eu

BaTS' Tail Phase (2/2)
  Do we need to start earlier?
  In the throughput phase, the average runtime

determines the speed.
  According to the central limit theorem, this no longer holds,

once the population is smaller than a threshold
(the same as the sample size in the beginning, +/- 30)

  With the threshold reached, BaTS migrates tasks to
faster machines.

  Same as replication, but original task is killed.
  This frees a slow machine for a hopefully shorter task.

contrail-project.eu

BaTS' Tail Phase Evaluation
  We compare the following options:

  No tail phase optimization.
  Stochastic replication

(based on completion time prediction)
  Replication with perfect knowledge

(theoretical optimum)
  Replication with random task selection

(no knowledge)
  Replication plus migration

contrail-project.eu

Types of Bags Used
  Normal distribution
  Truncated Levy distribution (heavy tailed)
  Multi-modal distribution (real world data)

contrail-project.eu

Normal Distribution

“low is good”	

•  Simulator runs	

•  30 bags each	

•  30 runs each	

contrail-project.eu

Heavy-tailed Distribution

contrail-project.eu

Multi-modal Distribution

contrail-project.eu

Tail Phase Findings
  Doing “nothing” is the only bad option
  Replication works fine

  Even with random selection
  But has higher error rate

  Additional migration seems not to be worth the effort
  The price we pay (kill running task) seems to

outweigh the benefits

contrail-project.eu

BaTS on the Amazon Spot Market
  So far, we used “on demand” instances

  Fixed price per hour
  Amazon spot market:

  Same (on demand) machine types at different prices
  Users “bid” a price for a machine (of a type)
  If the bid is >= the current spot price, user gets the

machine
  If the spot prices exceeds the bid, the user is

kicked out without prior notice
  (and is reimbursed for the aborted hour)

contrail-project.eu

Spot Market: pros and cons
  Pro:

  We might get machines cheaper
  In practice, spot prices hardly ever change (boring)

  Con:
  Tasks might get aborted

  (we also do this ourselves, no problem)
  Total budget fluctuates
  Getting a spot instance takes +/- 8 minutes

(before the booting starts)

contrail-project.eu

BaTS Sampling for the Spot Market

New research problem:	

What is a good bidding strategy for spot machines?	

contrail-project.eu

Bidding Strategies
  Maximum price

  Determine the max price at which a spot instance is
more cost efficient than the most profitable
on-demand instance:

  Current price
  Always get spot instances, the cheapest option at

the moment of execution
  Average price

  Literally the average between “current” and
“maximum”, in between the two extremes

contrail-project.eu

Spot Market Estimations
  Using max. 10 instances each of t1.micro, m1.small,

m1.medium
  Bag with 18000 tasks (average 32, 15, and 8 seconds)
  Max. bid used: $0.02 for t1.micro, $0.007 for m1.small

and $0.015 for m1.medium

No clear “winner”
strategy. The user
simply gets more

options…	

contrail-project.eu

Spot Market Runs

contrail-project.eu

Spot Market Findings
  It is too early for final conclusions.
  Opens more choices for the cost-savvy user.
  The current implementation only uses the current

spot prices (no history)
  Taking long-term spot prices into account, user

might opt for a hard cost limit:
  Place a low bid and wait until the price drops
  Interrupt the whole computation if price goes up

during the computation

contrail-project.eu

Conlusions
  BaTS gives the user control over and choice from

several cloud offers
  Run cheaper and longer
  Or run faster with higher budget

  Learning stochastic properties of tasks works well in the
absence of runtime estimates

  Next steps:
  Fully integrate file I/O
  Handle fluctuating node performance (ongoing)
  Support workflows (tasks with dependencies)
  Fault tolerance Resilience
  Dig deeper into spot market options

contrail-project.eu41	

Questions?

contrail-project.eu42	

Funded under: FP7 (Seventh Framework Programme)	

Area: Internet of Services, Software & virtualization (ICT-2009.1.2)	

Project reference: 257438	

Total cost: 11,29 million euro	

EU contribution: 8,3 million euro	

Execution: From 2010-10-01 till 2013-09-30	

Duration: 36 months	

Contract type: Collaborative project (generic)	

contrail is co-funded by the
EC 7th Framework Programme

