contrail

open computing
infrastructures
for elastic
services

Ana Oprescu, Thilo Kielmann, Haralambie Leahu
Vrije Universiteit, Amsterdam
Alexandra Vintila, Politechnica University, Bucharest

contrail is co-funded by the EC
/th Framework Programme

The Contrail Project

Cloud Federation
Management
SP1

High Performance Real-Time
Scientific Data Analysis

Distributed Provision of
Georeferentiated Data

Large-scale Code Analysis
for Open Source software

Multimedia Processifng
Service Marketplace

Map/ Bag-of- Web-
Reduce Tasks servers

key-value | | structured
store storage el

Cloud User Interface + API

well known abstractions
(POSIX AP, x86 ISA, IP Network)

Resource || Moni- | Account- I Stora ge—
Selection || toring ing || Sl Network L O] N
Security
laaS Federation Provid
(distr. registry, VO management, identity mgmt) roviaers

Integration,Validation and Testing

SP4

Use cases and
Exploitation

Platform-as
a-Service
SP3

contrail-project.eu_mgi™

—

PHP-based Web applications
MySQL

MapReduce

Task Farming

XtreemFS files system

Accessible via a common Web GUI

. . - /
contrail-project.eu_mgr

ConPaaS GUI

& ConPaaS- managementin =

& C ®

w| N

=~ create new service

i | |
Scalarix

New MapReduce Service @
created 11 minutes ago

New Java Service @
created 11 minutes ago

New Scalarix Service @
created 12 minutes ago

L gpierre B 9133 [® logout

23.11MB 294 GB 41+

Stored Data Total Capacity virtual instances

51+

virtual instances

257900 3

KeyValue Pairs virtual instances

©2011 Contrail - ConPaaS is the PaaS component of Contrail

contrail—project.ewj’y

ConPaaS Service Architecture

Cloud users

Web Standard
interface VM images

r—_——e—e— — e— e— | —_— —_— —_— —_— —_— —_— —_— —_—— -

Today:
Task farming

Service
controller

VM instance

service E .
E &[J/ Worker \]
. VM
: instances

ConPaaS service

Task Farming

« Dominant application type in grids
« over 75% of all submitted tasks
« over 90% of the total CPU-time consumption
o [losup,Epema et al.]
« High-throughput applications (Condor style)
. Parameter sweep
. Traditional execution model “grab and run”
« Get as many machines as possible
« Computation for free, best-effort execution
« Desktop grids, clusters, ...

J \ SO OO
—

contrail-project.ew mgi ™

The promise of the cloud

®Elastic computing, get exactly the machines you need,
exactly when you need them...
®VVell, did we mention you have to pay for the hour?

-
7 contrail-project.eumgt™

“Quality of Service”

®Small Instance, $0.085 per hour
® 1.7 GB of memory, | EC2 Compute Unit (ECU)

® High-memory extra large, $0.50 per hour
® 17.1 GB memory, 6.5 ECU

® High CPU medium, $0.17 per hour

® 1.7 GB of memory, 5 EC2 Compute Units

Which one is faster for my application???

Which one is cost efficient???

8 contrail-project.eu_mgt™

Bag Characteristics

. Many independent tasks
« All tasks are always ready to run

« Runtimes are unknown to the user

« Tasks have some (unknown) runtime distribution
o Simplifications:

Tasks can be aborted/restarted

No costs of input/output files (ongoing work)

®
« No disruptive performance changes across - Rk
. . I i -

clouds (e.g., with cache sizes that delay - H\//{ ——
some tasks but not the others) "f”i}"\/ = 3
T e

'l \ Z /

| %\\\\‘//////

- t/ /E

-
contrail-project.eu_ng

Cloud Characteristics

® A cloud offering provides machines of certain properties

like CPU speed and memory
® All machines in a cloud offering are homogeneous
® There is an upper limit of machines per cloud that a user
can get
® A machine is charged per Accountable Time Unit (ATU);
| hour, for example
® We call a cloud offering (machine type, price, max.

number) a cluster
® We are HPC guys, after0 all...

-
contrail-project.eu_mgi™

® Run all tasks from our bag on (cloud) clusters,
without spending more than our budget

® Allocate/release machines dynamically while learning
how fast our tasks execute on the different clusters

® [f we learn that our budget is too low, give up

® Minimize makespan of the whole bag, if we can make
it within budget

. . - /
| contrail-project.eu_mgr

BaTS: Budget-aware task scheduler

® Self scheduling tasks
® Reconfiguring cluster configurations

A 4

A 4

Master

Task
Profiler

Cluster

Utilization

l

B

Reconfigure |—»

Scheduler

AN

Cloud users

Standard
VM images

Web
interface

S

Worker
VM

-
contrail-project.eu_ng

The BaTS Story

« "Every good story has a beginning, a middle part, and
an end.”
« With BaTS:
. Runtime and budget estimation
. Throughput phase
. Tail phase

contrail-project.eu_mgt™

Runtime Estimation

« Statistics for sampling with replacement:
Bag of tasks can be described with pretty good accuracy

« We collect average and variance
30 f

from a small sample

sample size (n)

© O O O

O O
o L

200

400 600
BoT size (N)

800

contrail-project.eu_mgi™

1000

—

Runtime Estimation

« For each cluster (cloud machine type) we need a
sample of +/- 30 completed tasks
o (drawn at random)
- This might be costly and/or time consumina

number of tas

—
completion time

-
contrail-project.euw mg ™

Compact Sampling

Assume:
g(x) =a*f(x)+b

number of task

Linear Regression:
Replicate 7 tasks

1 ¥ W
‘ : I completion time
I

Distribute rest of
sample (30-7=23)
over all clusters

number of tasks

Map samples to
other clusters -

completion time

-
contrail-project.eu_ng

Cluster Configuration

®From the average speed of each cluster, (in tasks per minute) we
can compute estimates for makespan (Te) and cost (Be) for a
configuration from nodes of multiple clusters:

N
le = Zcm a;, Be = [ATU—| Zaz*cz
i=1 T, ‘

® Ve minimize Te while keeping Be <= B using
a modified Bounded Knapsack Problem (BKP)

® The BKP can be solved in pseudo-polynomial time, as a
0-1 knapsack problem via linear programming

®BaTS chooses the configuration with minimal Te for Be <= B

17 contrail-project.eu_mgt™

—

Budget Estimation

o User must make the trade-off between cost and
completion time

« BaTS provides the user with choice (cost, time), using
cluster configurations computed from the sampling
phase:

« Cheapest makespan
« Cheapest makespan +10/20% cost

« Fastest makespan -10/20% cost
. Fastest makespan

« (more options are possible)

« Each configuration (in fact) consists of the numbers of
machines per cluster

-
contrail-project.eu_mgr

BaTS: Throughput Phase

® Self scheduling tasks M
® Reconfiguring cluster configurations

Y e b
%»’-ﬁ\

B P

regularly

Master @
Task Cluster

Profiler | |Utilization

. s

Reconfigure |—» Scheduler

NN
gy

-—
19 contrail-project.ew mgi ™

Progress Monitoring

« BaTS starts from the user-selected, initial configuration
« At regular intervals (e.g., 5 minutes), BaTS re-evaluates

the configuration
1. Update average and variance per cluster
2. Re-evaluate the machine configuration

o Execution on real machines adds some complexity:
 Individually requested from the cloud provider(s),
startup time before being ready
« Each machine has its own end of the next ATU

contrail-project.eu_mgi™

Re-evaluate the
machine configuration

« Solve the remaining problem
o Less tasks
« Less money left
» Track already-paid time left on machines
o If budget violation expected, get more machines with
better price/performance ratio, and drop others
o If makespan violation expected, get more fast machines,
and drop others
o If both budget and makespan violations expected, call

murmy the user

-
contrail-project.eu_mgt™

Fluid vs.Discrete Models

. BaTS (the BKP solver) allocates machines per full ATU

« Assumes a “fluid” model of computing time
4

machines

time

-
contrail-project.eu_mgt™

Fluid vs.Discrete Models

« Tasks, however, are sequential, cannot be split across
“leftover” cycles

o lasks on machines in final ATU:

machines

4

AAAAAAAAAAA

AAAAAAA

T

time

contrail-project.ew mgi ™

—

The End is Near!

« The tail phase needs some special consideration

« Bags with high variance may overrun predicted
makespan (and thus budget)

« Even without overrunning, towards the end machines
remain idle

-
contrail-project.eu_mgr

BaTlS' Tail Phase

« As soon as a machine can not be assigned a task,
BaTS switches to the tail phase:
o Replicate running tasks onto idle machines

« Which task to replicate?
« Ihe one that will terminate last!

« OK, how do we know?
. Estimate completion time based actual runtime:

« ‘Task /is running for 12 minutes now, what is its
expected completion time, given the observed
average and variance of the bag?”

« Estimate completion time onto the idle machine (starting
from scratch)
« If shorter, replicate

L
contrail-project.eu_ng

BaTS' Tail Phase (2/2)

« Do we need to start earlier?
« In the throughput phase, the average runtime

determines the speed.

« According to the central limit theorem, this no longer holds,
once the population is smaller than a threshold
(the same as the sample size in the beginning, +/- 30)

« With the threshold reached, BaTS migrates tasks to
faster machines.
« Same as replication, but original task is killed.
. This frees a slow machine for a hopefully shorter task.

contrail-project.ew mgi ™

BaTlS' Tall Phase Evaluation

« We compare the following options:

« No tail phase optimization.

« Stochastic replication
(based on completion time prediction)

« Replication with perfect knowledge
(theoretical optimum)

« Replication with random task selection
(no knowledge)

« Replication plus migration

-
contrail-project.eu_mgi™

Types of Bags Used

0.05

0.04

0.038

0.02

0.01

« Normal distribution

« Truncated Levy distribution (heavy tailed)
« Multi-modal distribution (real world data)

T LT T
average=14.705
median=11.125
0 5 10 15 20 25 30 35 40 45

occurrences
(@]

=y
H

—
N
T

—
o
T

[o0]
T

»

N

0

DACH workload msss

PN
% B B R 7570 0y B, R O % % O S
runtime(seconds) 4

-
contrail-project.euw mg ™

Normal Distribution -

-5 '
-6 |
-7
-8

-10 : = ||

-14 1 1 1 1 1
Replication Migration+ Perfect Random Without
ReplicationReplicationReplicationReplication
avg BN min 3 max

e Simulator runs
* 30 bags each
e 30 runs each

makespan compared to estimation (in %)
©

Bags with Normal Distribution, using minimal budget + 10%
3 T T T T T

0
_1 [

3 “low is good”

_6 1 1 1 1 1
Replication Migration+ Perfect Random Without
Replication Replication Replication Replication
avg BN min 3 max . . L
contrail-project.eu_mgr

makespan compared to estimation (in %)

Heavy-tailed Distribution

Bags with Levy-truncated Distribution, using fastest budget

;\? 20 T T T T T
£

= 10

S

% 0 =] l_
8 i gr

3 -10

8

£ 20

o

| =

8 .30 -
g

© L L ||

E _40 L L) 1 L

Replication Migration+ Perfect Random Without

.) o . .. o ReplicationReplicationReplicationReplication
Bags with Levy-truncated Distribution, using minimal budget + 10% avg EEEN min C—= max mmm

— 80 T T T T T
R

£ 70

5§ 60

£ 50

8 40

e

3 30

g 20

£

8 10

c

S 0

(72]

2 -10

[\

E _20 1

Replication Migration+ Perfect Random Without
ReplicationReplicationReplicationReplication

avg EEE min O max . —
contrail-project.eu_mgi™

Multi-modal Distribution

Bags with Multi-modal Distribution, using fastest budget

? 40 T T T T T
2
£ 30
| =
S 20 . i
£
g 10 -
3
= -10
g
-20
8
c
g 30 i
8 .40
S || Ll L
E _50 1 1 . 1 1
Replication Migration+ Perfect Random _ Without
Bags with Multi-modal Distribution, using minimal budget + 10% ReplicationReplicationReplicationReplication
50 avg EEEN min =0 max
40
30
20
10
0
-10
-20
-30 Ll [Ll L
-40 1 1 1 1 1

makespan compared to estimation (in %)

Replication Migration+ Perfect Random Without
ReplicationReplicationReplicationReplication
avg EEE min C— max . : =

contrail-project.eu_mgr

Tail Phase Findings

« Doing "nothing” is the only bad option
« Replication works fine
« Even with random selection
« But has higher error rate
« Additional migration seems not to be worth the effort

« The price we pay (kill running task) seems to
outweigh the benefits

-
contrail-project.eu_mgi™

BaTS on the Amazon Spot Market

« S0 far, we used “on demand” instances
« Fixed price per hour
« Amazon spot market:
« Same (on demand) machine types at different prices
« Users “bid” a price for a machine (of a type)

o If the bid is >= the current spot price, user gets the
machine

o If the spot prices exceeds the bid, the user is
Kicked out without prior notice

 (and is reimbursed for the aborted hour)

-
contrail-project.eu_mgi™

Spot Market: pros and cons

« Pro:
« We might get machines cheaper
« In practice, spot prices hardly ever change (boring)
« Con:
« Tasks might get aborted
 (we also do this ourselves, no problem)
« Total budget fluctuates

« Getting a spot instance takes +/- 8 minutes
(before the booting starts)

-
contrail-project.eu_mgi™

BaTS Sampling for the Spot Market

%

Sample tasks

%

Cloud Provider
(Amazon EC2)

Linear
regression

Spot price
analysis

Average

execution time

)

Bidding
strategy

Bounded
Knapsack
Algorithm

>

Schedule 1

|

>

Schedule 2

New research problem:
What is a good bidding strategy for spot machines!?

>

Schedule n

L
contrail-project.eu_mg’™

Bidding Strategies

« Maximum price
« Determine the max price at which a spot instance is

more cost efficient than the most profitable

on-demand instance: T,
Max, =—*c, —¢

i

« Current price

« Always get spot instances, the cheapest option at
the moment of execution

« Average price

. Literally the average between “current” and
‘maximum”, in between the two extremes

-
contrail-project.eu_mgi™

Spot Market Estimations

« Using max. 10 instances each of t1.micro, m1.small,
m1.medium
« Bag with 18000 tasks (average 32, 15, and 8 seconds)

« Max. bid used: $0.02 for t1.micro, $0.007 for m1.small
and $0.015 for m1.mediim

S -+

4
No clear “winner” % | =#=OnDomend |
~{— Spot Curren t
strategy. [he user) e Spot Max
. ~—Spot Average |
simply gets more . e

nké

options... 0

0 10 20 30 40 50
Makespan (hour)

-
contrail-project.eu_mgt™

Spot Market Findings

o It is too early for final conclusions.
« Opens more choices for the cost-savvy user.
» The current implementation only uses the current
spot prices (no history)
 Taking long-term spot prices into account, user
might opt for a hard cost limit:
» Place a low bid and wait until the price drops

o Interrupt the whole computation if price goes up
during the computation

-
contrail-project.eu_mgi™

Conlusions

« BaTS gives the user control over and choice from
several cloud offers
« Run cheaper and longer
« Or run faster with higher budget
« Learning stochastic properties of tasks works well in the
absence of runtime estimates

« Next steps:
« Fully integrate file I/O
» Handle fluctuating node performance (ongoing)
« Support workflows (tasks with dependencies)
. Faulttelerance Resilience
« Dig deeper into spot markc® = 1s

—

COOPERATION contrail-project.eu_mgt T

»

”’

.
s

contrail

open computing
infrastructures
for elastic
services

* X %

*
*
*

*
*
* 4 K

COOPERATION

contrail is co-funded by the
EC 7th Framework Programme

Funded under: FP7 (Seventh Framework Programme)

Area: Internet of Services, Software & virtualization (ICT-2009.1.2)
Project reference: 257438

Total cost: | 1,29 million euro

EU contribution: 8,3 million euro

Execution: From 2010-10-01 till 2013-09-30

Duration: 36 months

Contract type: Collaborative project (generic)

42

contrail-project.eu_sgi ™

