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PHP-based Web applications
MySQL

MapReduce

Task Farming

XtreemFS files system

Accessible via a common Web GUI
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ConPaaS GUI
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ConPaaS Service Architecture
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Task Farming

« Dominant application type in grids
« over 75% of all submitted tasks
« over 90% of the total CPU-time consumption
o [losup,Epema et al.]
« High-throughput applications (Condor style)
. Parameter sweep
. Traditional execution model “grab and run”
« Get as many machines as possible
« Computation for free, best-effort execution
« Desktop grids, clusters, ...
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The promise of the cloud

®Elastic computing, get exactly the machines you need,
exactly when you need them...
®VVell, did we mention you have to pay for the hour?

-
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“Quality of Service”

®Small Instance, $0.085 per hour
® 1.7 GB of memory, | EC2 Compute Unit (ECU)

® High-memory extra large, $0.50 per hour
® 17.1 GB memory, 6.5 ECU

® High CPU medium, $0.17 per hour

® 1.7 GB of memory, 5 EC2 Compute Units

Which one is faster for my application???

Which one is cost efficient???
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Bag Characteristics

. Many independent tasks
« All tasks are always ready to run

« Runtimes are unknown to the user

« Tasks have some (unknown) runtime distribution
o Simplifications:

Tasks can be aborted/restarted

No costs of input/output files (ongoing work)

®
« No disruptive performance changes across - Rk
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clouds (e.g., with cache sizes that delay - H\//{ ——
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Cloud Characteristics

® A cloud offering provides machines of certain properties

like CPU speed and memory
® All machines in a cloud offering are homogeneous
® There is an upper limit of machines per cloud that a user
can get
® A machine is charged per Accountable Time Unit (ATU);
| hour, for example
® We call a cloud offering (machine type, price, max.

number) a cluster
® We are HPC guys, after0 all...

-
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® Run all tasks from our bag on (cloud) clusters,
without spending more than our budget

® Allocate/release machines dynamically while learning
how fast our tasks execute on the different clusters

® [f we learn that our budget is too low, give up

® Minimize makespan of the whole bag, if we can make
it within budget

. . - /
| contrail-project.eu_mgr



BaTS: Budget-aware task scheduler

® Self scheduling tasks
® Reconfiguring cluster configurations
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The BaTS Story

« "Every good story has a beginning, a middle part, and
an end.”
« With BaTS:
. Runtime and budget estimation
. Throughput phase
. Tail phase
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Runtime Estimation

« Statistics for sampling with replacement:
Bag of tasks can be described with pretty good accuracy

« We collect average and variance
30 f

from a small sample

sample size (n)
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Runtime Estimation

« For each cluster (cloud machine type) we need a
sample of +/- 30 completed tasks
o (drawn at random)
- This might be costly and/or time consumina

number of tas

—
completion time

-
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Compact Sampling

Assume:
g(x) =a*f(x)+b

number of task

Linear Regression:
Replicate 7 tasks

1 ¥ W
‘ : I completion time
I

Distribute rest of
sample (30-7=23)
over all clusters

number of tasks

Map samples to
other clusters -

completion time
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Cluster Configuration

®From the average speed of each cluster, (in tasks per minute) we
can compute estimates for makespan (Te) and cost (Be) for a
configuration from nodes of multiple clusters:

N
le = Zcm a;, Be = [ATU—| Zaz*cz
i=1 T, ‘

® Ve minimize Te while keeping Be <= B using
a modified Bounded Knapsack Problem (BKP)

® The BKP can be solved in pseudo-polynomial time, as a
0-1 knapsack problem via linear programming

®BaTS chooses the configuration with minimal Te for Be <= B
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Budget Estimation

o User must make the trade-off between cost and
completion time

« BaTS provides the user with choice (cost, time), using
cluster configurations computed from the sampling
phase:

« Cheapest makespan
« Cheapest makespan +10/20% cost

« Fastest makespan -10/20% cost
. Fastest makespan

« (more options are possible)

« Each configuration (in fact) consists of the numbers of
machines per cluster

-
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BaTS: Throughput Phase

® Self scheduling tasks M
® Reconfiguring cluster configurations
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Progress Monitoring

« BaTS starts from the user-selected, initial configuration
« At regular intervals (e.g., 5 minutes), BaTS re-evaluates

the configuration
1. Update average and variance per cluster
2. Re-evaluate the machine configuration

o Execution on real machines adds some complexity:
 Individually requested from the cloud provider(s),
startup time before being ready
« Each machine has its own end of the next ATU
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Re-evaluate the
machine configuration

« Solve the remaining problem
o Less tasks
« Less money left
» Track already-paid time left on machines
o If budget violation expected, get more machines with
better price/performance ratio, and drop others
o If makespan violation expected, get more fast machines,
and drop others
o If both budget and makespan violations expected, call

murmy the user

-
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Fluid vs.Discrete Models

. BaTS (the BKP solver) allocates machines per full ATU

« Assumes a “fluid” model of computing time
4

machines

time
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Fluid vs.Discrete Models

« Tasks, however, are sequential, cannot be split across
“leftover” cycles

o lasks on machines in final ATU:

machines

4

AAAAAAAAAAA

AAAAAAA

T

time

contrail-project.ew mgi ™

—



The End is Near!

« The tail phase needs some special consideration

« Bags with high variance may overrun predicted
makespan (and thus budget)

« Even without overrunning, towards the end machines
remain idle

-
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BaTlS' Tail Phase

« As soon as a machine can not be assigned a task,
BaTS switches to the tail phase:
o Replicate running tasks onto idle machines

« Which task to replicate?
« Ihe one that will terminate last!

« OK, how do we know?
. Estimate completion time based actual runtime:

« ‘Task /is running for 12 minutes now, what is its
expected completion time, given the observed
average and variance of the bag?”

« Estimate completion time onto the idle machine (starting
from scratch)
« If shorter, replicate

L
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BaTS' Tail Phase (2/2)

« Do we need to start earlier?
« In the throughput phase, the average runtime

determines the speed.

« According to the central limit theorem, this no longer holds,
once the population is smaller than a threshold
(the same as the sample size in the beginning, +/- 30)

« With the threshold reached, BaTS migrates tasks to
faster machines.
« Same as replication, but original task is killed.
. This frees a slow machine for a hopefully shorter task.
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BaTlS' Tall Phase Evaluation

« We compare the following options:

« No tail phase optimization.

« Stochastic replication
(based on completion time prediction)

« Replication with perfect knowledge
(theoretical optimum)

« Replication with random task selection
(no knowledge)

« Replication plus migration

-
contrail-project.eu_mgi™



Types of Bags Used
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« Normal distribution

« Truncated Levy distribution (heavy tailed)
« Multi-modal distribution (real world data)
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Heavy-tailed Distribution

Bags with Levy-truncated Distribution, using fastest budget
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Multi-modal Distribution

Bags with Multi-modal Distribution, using fastest budget
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Tail Phase Findings

« Doing "nothing” is the only bad option
« Replication works fine
« Even with random selection
« But has higher error rate
« Additional migration seems not to be worth the effort

« The price we pay (kill running task) seems to
outweigh the benefits

-
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BaTS on the Amazon Spot Market

« S0 far, we used “on demand” instances
« Fixed price per hour
« Amazon spot market:
« Same (on demand) machine types at different prices
« Users “bid” a price for a machine (of a type)

o If the bid is >= the current spot price, user gets the
machine

o If the spot prices exceeds the bid, the user is
Kicked out without prior notice

 (and is reimbursed for the aborted hour)

-
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Spot Market: pros and cons

« Pro:
« We might get machines cheaper
« In practice, spot prices hardly ever change (boring)
« Con:
« Tasks might get aborted
 (we also do this ourselves, no problem)
« Total budget fluctuates

« Getting a spot instance takes +/- 8 minutes
(before the booting starts)

-
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BaTS Sampling for the Spot Market
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Bidding Strategies

« Maximum price
« Determine the max price at which a spot instance is

more cost efficient than the most profitable

on-demand instance: T,
Max, =—*c, —¢

i

« Current price

« Always get spot instances, the cheapest option at
the moment of execution

« Average price

. Literally the average between “current” and
‘maximum”, in between the two extremes

-
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Spot Market Estimations

« Using max. 10 instances each of t1.micro, m1.small,
m1.medium
« Bag with 18000 tasks (average 32, 15, and 8 seconds)

« Max. bid used: $0.02 for t1.micro, $0.007 for m1.small
and $0.015 for m1.mediim
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Spot Market Findings

o It is too early for final conclusions.
« Opens more choices for the cost-savvy user.
» The current implementation only uses the current
spot prices (no history)
 Taking long-term spot prices into account, user
might opt for a hard cost limit:
» Place a low bid and wait until the price drops

o Interrupt the whole computation if price goes up
during the computation

-
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Conlusions

« BaTS gives the user control over and choice from
several cloud offers
« Run cheaper and longer
« Or run faster with higher budget
« Learning stochastic properties of tasks works well in the
absence of runtime estimates

« Next steps:
« Fully integrate file I/O
» Handle fluctuating node performance (ongoing)
« Support workflows (tasks with dependencies)
. Faulttelerance Resilience
« Dig deeper into spot markc® = 1s
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