
ConPaaS: an integrated runtime
environment for elastic cloud

applications
Guillaume Pierre

Vrije Universiteit Amsterdam

July 24th 2012

contrail is co-funded by the EC
7th Framework Programme
under Grant Agreement nr.

2574381



Typical Cloud Applications (according to AWS)

I Application Hosting

I Backup and Storage

I Content Delivery

I E-Commerce

I High Performance Computing

I Media Hosting

I On-Demand Workforce

I Search Engines

I Web Hosting

1



Applications running at Amazon Web Services

Sample: 50 applications from the
AWS Customer App Catalog.

2



Many Cloud applications are alike

I Web servers

I Application servers

I Database servers

I High-performance frameworks (MapReduce, MPI, Work�ows)

I . . . and a few percents of miscellaneous programs

Cloud application developers often rebuild
the same types of frameworks again and again and again. . .

3



Can the Cloud help support common types of applications?

I Infrastructure-as-a-Service provides basic computing resources
I Absolute �exibility: you can build anything you want
I But it can be very complex and time consuming

I Platform-as-a-Service provides high-level services
I Each PaaS service targets a speci�c family of applications
I Provide a simple deployment environment for applications
I Provide high-level guarantees for applications using these services

4



Contrail is composed of three main layers

I Infrastructure-as-a-Service
I Virtual machines, disks, networks

I Cloud federation
I Allow multiple IaaS providers to join forces

I Platform-as-a-Service (a.k.a. ConPaaS)
I Web servers � static content and dynamic web applications
I MapReduce � for data-intensive computing
I TaskFarming � for scienti�c applications
I Databases (SQL and NoSQL) � for everybody

5



ConPaaS in a nutshell

Goal: provide a fully-featured
PaaS environment for Contrail

I Broad range of functionalities
I Web application hosting (static �les, PHP, Java, . . . )
I Databases (SQL and NoSQL)
I High-performance execution frameworks (MapReduce, TaskFarming)

I Fully integrated
I Applications can compose any set of services together

I Easy to use but also very powerful
I Simple Web GUI + powerful command-line tool
I Services are highly customizable

I Cutting-edge SLA enforcement technologies
I Elasticity and resource provisioning techniques to guarantee

performance at the lowest possible cost

I Making full use of Contrail's IaaS and federation functionalities
I But also platform-independent

6



ConPaaS Applications
A ConPaaS application is de�ned as a composition of multiple service
instances

I For example: web hosting service + MySQL database + logging
service (to store access logs)

PHP service

(using 1 or more

machine instances)

Logging service

(using 1 or more

machine instances)

End user

SQL data service

(using 1 or more

machine instances)

7



ConPaaS Operation

I Users access ConPaaS thanks to a Web interface
I Login
I Start new services (i.e., start a standard VM image with the service

implementation)
I Manage existing services (i.e., communicate with the service's manager

to issue commands)
I Stop services (i.e., stop all service instances except the service

manager)
I Terminate services (i.e., destroy a service completely)

I An extended set of functionalities is available through a command-line
interface

I All commands from the Web interface are available (except starting a
new service)

I Additional commands may be implemented for expert users
I The command-line interface makes it easy to script service management

8



The ConPaaS Front-End

9



The ConPaaS Front-End

9



The ConPaaS Front-End

9



The ConPaaS Front-End

9



The ConPaaS Front-End

9



The ConPaaS Front-End

9



The ConPaaS Front-End

9



The ConPaaS Front-End

9



The ConPaaS Front-End

9



The ConPaaS Front-End

9



The ConPaaS Front-End

9



The ConPaaS Front-End

9



The ConPaaS Front-End

9



Architecture of a ConPaaS service

I A ConPaaS service is implemented as one or more virtual machine
instances dedicated to a single user

I Single-tenant: each VM belongs to a single user
I No VM sharing between services (even for the same user)

I ConPaaS services are elastic: we can grow/shrink their capacity at
runtime with no service disruption

I Horizontal provisioning: add/remove virtual machines

I ConPaaS services will support dynamic resource provisioning:
automatic capacity adjustment to support performance guarantees at
minimum cost

10



ConPaaS Organization

Load 
Balancer

PHP servers
(dynamic 
pages)

Web servers
(static pages)

PHP service
Manager

Load 
Balancer

MySQL
slaves

MySQL
master

MySQL service
Manager

Front-
end

Logic

Front-
end
GUI

End users

Service
admin

PHP 
service

MySQL 
service

Control plane Data plane

Virtual machine

Management traffic

Application trafic

Legend

11



ConPaaS Organization

Load 
Balancer

PHP servers
(dynamic 
pages)

Web servers
(static pages)

PHP service
Manager

Load 
Balancer

MySQL
slaves

MySQL
master

MySQL service
Manager

Front-
end

Logic

Front-
end
GUI

End users

Service
admin

PHP 
service

MySQL 
service

Control plane Data plane

Virtual machine

Management traffic

Application trafic

Legend

I Each manager VM contains a manager process
I Each agent VM contains an agent process

12



Lifecycle of a ConPaaS service

No service

Service

created
(1 manager VM)

Service

started
(1 manager VM

+ N agent VMs)

Scale

up/down

Service−specific

operations

Terminate

Create

Stop

Start

13



The Web hosting service
I The service exists in two versions: PHP and Java

I Initially the service has 2 VMs
I 1 VM running the manager
I 1 VM running a load balancer, a web server and a PHP backend

I When adding VMs each VM becomes specialized (load balancer VMs,
web server VMs, PHP backend VMs)

Proxy

Web

PHP

Manager

Web

Manager Proxy

Web

PHP

Manager Proxy

PHP

Proxy

Web PHP

Manager

+1 W
eb

+1 PHP

+1
 P

H
P

+1
 P

H
P

14



Session handling in the PHP service

I PHP has built-in support for sessions

I We must share session state between multiple PHP backends
(otherwise users would logout at each request)

I We use the Scalaris key-value store for that
I One Scalaris server inside the manager VM

I Making use of the Scalaris session storage is totally transparent to the
applications

15



Service recon�guration

I When the user scales the service up:

1. The front-end sends a request to the service manager to scale up
2. The service manager creates a new VM with proper contextualization

information, then starts polling
3. The agent VM boots, then starts its manager process
4. When the manager establishes a connection with the agent, it requests

it to start one or more roles
5. The manager uploads code/data as necessary
6. The manager recon�gures other VMs as necessary

I When scaling down:
I Same story in opposite order

16



Building new ConPaaS services

I Building new ConPaaS services from scratch is
:::::::
HARD

I Build a proper VM image with contextualization
I Develop new manager and agent deamons
I Implement a standardized protocol between the front-end and the

agents
I All communication goes over SSL with custom security checks

I Solution: the service core
I All ConPaaS services use a single VM image
I All ConPaaS services use the same manager and agent deamons
I The service core implements shared functionality between all services

I Start/stop/contextualize virtual machines
I Secure communication primitives

I Each service can specialize the service core
I Implement the service-speci�c parts

17



Structure of a service implementation

Building a new ConPaaS service from the service core is
::::::
EASY

I (optional) Provide shell scripts to be executed when VMs start and
stop

I Write a manager and an agent class in Python

I Extend one Python �le to register the new service

I Extend the front-end with one service-speci�c page in PHP

18



Conclusion

I ConPaaS is a platform-as-a-service environment
I Designed to facilitate elastic application hosting in the cloud
I Designed to be easily extensible

I ConPaaS addresses two major classes of applications:
I Web applications
I Scienti�c applications
I Combinations of both

I Future plans:
I Automatic performance control
I Application manifests
I Better developer support
I More services :-)

19



Credits

Adriana Szekeres
(server side)

Ismail El Helw
(server side)

Claudiu Gheorghe
(Web GUI)

20



About the hands-on session

I All support documents can be found at http://bit.ly/MCKtil
I Presentation slides, exercises, support programs etc.

I Please work in groups of two

I Make sure your Web browser is con�gured to use the SOCKS proxy at
http://130.37.30.108:80/

I The ConPaaS front-end is located at http://10.100.0.97:9999/

21

http://bit.ly/MCKtil
http://130.37.30.108:80/
http://10.100.0.97:9999/


contrail is co-funded by the
EC 7th Framework Programme

Funded under: FP7 (Seventh Framework Programme)
Area: Internet of Services, Software & Virtualization
(ICT-2009.1.2)
Project reference: FP7-IST-257438
Total cost: 11.29 million euro
EU contribution: 8.3 million euro
Execution: From 2010-10-01 till 2013-09-30
Duration: 36 months
Contract type: Collaborative project (generic)

22


