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Typical Cloud Applications (according to AWS)

I Application Hosting

I Backup and Storage

I Content Delivery

I E-Commerce

I High Performance Computing

I Media Hosting

I On-Demand Workforce

I Search Engines

I Web Hosting
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Applications running at Amazon Web Services

Sample: 50 applications from the
AWS Customer App Catalog.
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Many Cloud applications are alike

I Web servers

I Application servers

I Database servers

I High-performance frameworks (MapReduce, MPI, Work�ows)

I . . . and a few percents of miscellaneous programs

Cloud application developers often rebuild
the same types of frameworks again and again and again. . .
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Can the Cloud help support common types of applications?

I Infrastructure-as-a-Service provides basic computing resources
I Absolute �exibility: you can build anything you want
I But it can be very complex and time consuming

I Platform-as-a-Service provides high-level services
I Each PaaS service targets a speci�c family of applications
I Provide a simple deployment environment for applications
I Provide high-level guarantees for applications using these services
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Contrail is composed of three main layers

I Infrastructure-as-a-Service
I Virtual machines, disks, networks

I Cloud federation
I Allow multiple IaaS providers to join forces

I Platform-as-a-Service (a.k.a. ConPaaS)
I Web servers � static content and dynamic web applications
I MapReduce � for data-intensive computing
I TaskFarming � for scienti�c applications
I Databases (SQL and NoSQL) � for everybody
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ConPaaS in a nutshell

Goal: provide a fully-featured
PaaS environment for Contrail

I Broad range of functionalities
I Web application hosting (static �les, PHP, Java, . . . )
I Databases (SQL and NoSQL)
I High-performance execution frameworks (MapReduce, TaskFarming)

I Fully integrated
I Applications can compose any set of services together

I Easy to use but also very powerful
I Simple Web GUI + powerful command-line tool
I Services are highly customizable

I Cutting-edge SLA enforcement technologies
I Elasticity and resource provisioning techniques to guarantee

performance at the lowest possible cost

I Making full use of Contrail's IaaS and federation functionalities
I But also platform-independent
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ConPaaS Applications
A ConPaaS application is de�ned as a composition of multiple service
instances

I For example: web hosting service + MySQL database + logging
service (to store access logs)

PHP service

(using 1 or more

machine instances)

Logging service

(using 1 or more

machine instances)

End user

SQL data service

(using 1 or more

machine instances)
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ConPaaS Operation

I Users access ConPaaS thanks to a Web interface
I Login
I Start new services (i.e., start a standard VM image with the service

implementation)
I Manage existing services (i.e., communicate with the service's manager

to issue commands)
I Stop services (i.e., stop all service instances except the service

manager)
I Terminate services (i.e., destroy a service completely)

I An extended set of functionalities is available through a command-line
interface

I All commands from the Web interface are available (except starting a
new service)

I Additional commands may be implemented for expert users
I The command-line interface makes it easy to script service management
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The ConPaaS Front-End
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Architecture of a ConPaaS service

I A ConPaaS service is implemented as one or more virtual machine
instances dedicated to a single user

I Single-tenant: each VM belongs to a single user
I No VM sharing between services (even for the same user)

I ConPaaS services are elastic: we can grow/shrink their capacity at
runtime with no service disruption

I Horizontal provisioning: add/remove virtual machines

I ConPaaS services will support dynamic resource provisioning:
automatic capacity adjustment to support performance guarantees at
minimum cost
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ConPaaS Organization
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I Each manager VM contains a manager process
I Each agent VM contains an agent process
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Lifecycle of a ConPaaS service

No service

Service

created
(1 manager VM)
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Create

Stop

Start
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The Web hosting service
I The service exists in two versions: PHP and Java

I Initially the service has 2 VMs
I 1 VM running the manager
I 1 VM running a load balancer, a web server and a PHP backend

I When adding VMs each VM becomes specialized (load balancer VMs,
web server VMs, PHP backend VMs)
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Session handling in the PHP service

I PHP has built-in support for sessions

I We must share session state between multiple PHP backends
(otherwise users would logout at each request)

I We use the Scalaris key-value store for that
I One Scalaris server inside the manager VM

I Making use of the Scalaris session storage is totally transparent to the
applications
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Service recon�guration

I When the user scales the service up:

1. The front-end sends a request to the service manager to scale up
2. The service manager creates a new VM with proper contextualization

information, then starts polling
3. The agent VM boots, then starts its manager process
4. When the manager establishes a connection with the agent, it requests

it to start one or more roles
5. The manager uploads code/data as necessary
6. The manager recon�gures other VMs as necessary

I When scaling down:
I Same story in opposite order
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Building new ConPaaS services

I Building new ConPaaS services from scratch is
:::::::
HARD

I Build a proper VM image with contextualization
I Develop new manager and agent deamons
I Implement a standardized protocol between the front-end and the

agents
I All communication goes over SSL with custom security checks

I Solution: the service core
I All ConPaaS services use a single VM image
I All ConPaaS services use the same manager and agent deamons
I The service core implements shared functionality between all services

I Start/stop/contextualize virtual machines
I Secure communication primitives

I Each service can specialize the service core
I Implement the service-speci�c parts
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Structure of a service implementation

Building a new ConPaaS service from the service core is
::::::
EASY

I (optional) Provide shell scripts to be executed when VMs start and
stop

I Write a manager and an agent class in Python

I Extend one Python �le to register the new service

I Extend the front-end with one service-speci�c page in PHP
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Conclusion

I ConPaaS is a platform-as-a-service environment
I Designed to facilitate elastic application hosting in the cloud
I Designed to be easily extensible

I ConPaaS addresses two major classes of applications:
I Web applications
I Scienti�c applications
I Combinations of both

I Future plans:
I Automatic performance control
I Application manifests
I Better developer support
I More services :-)
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About the hands-on session

I All support documents can be found at http://bit.ly/MCKtil
I Presentation slides, exercises, support programs etc.

I Please work in groups of two

I Make sure your Web browser is con�gured to use the SOCKS proxy at
http://130.37.30.108:80/

I The ConPaaS front-end is located at http://10.100.0.97:9999/
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