Technical document on ConPaaS services:

ConPaaS MySQL Server

Ales Cernivec

December 19, 2011

Contents

1 Introduction

2 Architecture

3 Installation on VM images

4 ConPaaS MySQL Server Web front-end
5 ConPaaS MySQL Server Manager API

6 Conclusion

1 Introduction

Currently you can add and remove agent nodes, query for status of the agent
nodes, configure users, upload mysql database.

2 Architecture

ConPaaS MySQL Manager node has to be run manually or by the usage of
ConPaaS web front-end. ConPaaS Servers can also be managed through direct
web front-end (see section 4).

This is only for development: when manager starts, it fetches the fresh pack-
age of conpaas sources from public location (e.g.
http://contrail.xlab.si/conpaassql.tar). Images will be pre-packaged
with mysql manager and agent on the release. Template for creating man-
ager, contains details on installation script (
http://contrail.xlab.si/conpaassql/manager/conpaas-install.sh, com-
pare to section 3). When installation is complete, manager can be used to
orchestrate ConPaaS SQL agents.

When obtaining access point of the manager, new agents can be provisioned
by issuing HTTP POST add_nodes command on resource sql-manager-host:/:

POST / HTTP/1.1

Accept: */*

Content-Type: application/json

Content-Length: 67

{"params": {"function": "agent"}, "method": "add_nodes", "id": "1"}

Parameter function will soon support more than just creating new agent
nodes (e.g. cluster manager, cluster agent, cluster). Parameter method desig-
nates command add_nodes and id equals 1.

3 Installation on VM images

These steps are necessary in order to clean install ConPaaSSQL server on images
used on OpenNebula.
First, you will need

1. http://contrail.xlab.si/conpaassql/agent/conpaas-install.sh
2. http://contrail.xlab.si/conpaassql/manager/conpaas-install.sh

3. http://contrail.xlab.si/conpaassql.tar This is a package from SVN.

stepl
Copy

e (1) anywhere on ONE manager node, e.g.
root@onehead: /home/contrail/agent/conpaas-install.sh (4)

e (2) anywhere on ONE manager node (different than (4), e.g.
root@onehead: /home/contrail/manager/conpaas-install.sh (5))

You will need this for the contextualization process.

step2

Download (3), untar it somewhere for editing (e.g. under
root@onehead: /home/contrail/temp/conpaassql-temp (6)).
step3

cd to (6), change ./src/conpaas/mysql/server/agent/configuration.cnf:

[MySQL_root_connection]
password= [mysql user’s password]
username=[mysql username]

step4

cd to (6), change ./src/conpaas/mysql/server/manager/configuration. cnf
in a following name (substitute IPs, Image ID, Network ID, paths to agent and
manager install scripts):

OPENNEBULA_URL=http://10.30.1.1:2633/RPC2 # your ONE installation
OPENNEBULA_IMAGE_ID=193 # image of mysql manager on ONE
OPENNEBULA_NETWORK_ID=205 # working network on ONE
OPENNEBULA_CONTEXT_SCRIPT_MANAGER=[location of (5) on ONE]
OPENNEBULA_CONTEXT_SCRIPT_AGENT=[location of (4) on ONE]

stepd

tar the content under (6) again to conpaassql.tar somewhere where VMs
running on ONE can wget from. (see also step 6).

step6

change agent install script (1) in a following way:

SERVER=contrail.xlab.si # public location,| somewhere that VMs on Ol
PACKAGE_NAME=conpaassql.tar # package from step 5)
DEST_DIR=/home/contrail/conpaassql # location on agent VM

step7

change manager install script (2) in a following way:

SERVER=contrail.xlab.si # public location, somewhere that VMs on ONE can wget from
PACKAGE_NAME=conpaassql.tar # package from step 5)
DEST_DIR=/home/contrail/conpaassql # location on manager VM

For deploying ConPaaS SQL Server image, we are using this template de-
scription:

NAME = conpaassql-manager
CPU = 0.2
MEMORY = 512
0s = [
arch = "i686",
boot = "hd",
root = "hda"]
DISK = [
image_id = "193", // The same as in step 4
bus = "scsi'",
readonly = "no"]
NIC = [NETWORK_ID = 205] // The same as in step 4
GRAPHICS = [
type="vnc"
]
CONTEXT = [
target=sdc,
files = /home/ales/sql/manager/conpaassql-install.sh \
// the same as in step 1, location (5)
]
RANK = "- RUNNING_VMS"

4 ConPaaS MySQL Server Web front-end

ConPaaS MySQL Server Web front-end can easily be installed after the server
already runs:

apt-get install python-setuptools python-dev python-pycurl -y
easy_install pip

pip install oca apache-libcloud

pip install --extra-index-url http://eggs.contrail.xlab.si \
conpaassql-manager-gui

mkdir -p /etc/conpaassql

cat > /etc/conpaassql/manager-gui.conf << EQOF

MANAGER_HOST = ’localhost’

EQOF

screen -S conpaasssql-manager-gui -d -m conpaassql_manager_gui

It also is not mandatory that the web front-end is installed on the same
server as the SQL Server already runs.

5 ConPaaS MySQL Server Manager API

Module conpaas.mysql.server.manager.internals contains internals of the
ConPaaS MySQL Server. ConPaaS MySQL Server consists of several nodes
with different roles.

e Manager node
e Agent node(s)

— Master

— Slave(s)
platform: Linux, Debian Squeeze, tested also within Ubuntu 10.10 (there
should be no problem when using later distributions).

synopsis: Internals of ConPaaS MySQL Servers.
moduleauthor: Ales Cernivec <ales.cernivec@xlab.si>

conpaas.mysql.server.manager.internals.add_nodes (kwargs)

Description:

HTTP POST method. Creates new node and adds it to the list of existing nodes
in the manager. A role of new node can be one of: agent, manager. Currently
only agent is supported. It makes internal call to createServiceNodeThread().

Parameters:
kwargs — string describing a function (agent).
Returns:

HttpJsonResponse - JSON response with details about the node.

Raises:

ManagerException

Example

POST / HTTP/1.1
Accept: */*
Content-Type: application/json

Body content: {"params": {"function": "agent"}, "method": /
l|add_nodesll’ l|id|l . l|1||}

conpaas.mysql.server.manager.internals.remove_nodes (params)

Description:

HTTP POST method. Deletes specific node from a pool of agent nodes. Node
deleted is given by {’serviceNodeId’:id}.

Parameters:

kwargs —string identifying a node.

Returns:

HttpJsonResponse - HttpJsonResponse - JSON response with details about the
node. OK if everything went well.

Raises:

ManagerException if something went wrong. It contains a detailed description

about the error.

Example

POST / HTTP/1.1
Accept: */*
Content-Type: application/json

Body content: {"params": {"serviceNodeId": "12"}, '"method": /
"remove_nodes", "id": "1"}

conpaas.mysql.server.manager.internals.list_nodes()

Description:

HTTP GET method. Uses IaaSClient.listVMs() to get list of all service
nodes. For each service node it checks if it is in servers list. If some of them are
missing they are removed from the list. Returns list of all service nodes.

Parameters:

Returns:

HttpJsonResponse - JSON response with the list of services: { ’serviceNode’:
[<a list of ids>]})

Raises:

HttpErrorResponse

Example

GET /?method=list_nodes&id=1 HTTP/1.1
Accept: x/*
Content-Type: application/json

conpaas.mysql.server.manager.internals.get_node_info()

Description:
HTTP GET method. Gets info of a specific node.

Parameters:

param (str) — serviceNodeld is a VMID of an existing service node.
Returns:

HttpJsonResponse - JSON response with details about the node: : {’serviceNode’:{’id’:
serviceNode.vmid,’ip’: serviceNode.ip,’isRunningMySQL’: serviceNode.isRunningMySQL}}.

Raises:

ManagerException

Example

GET /7params=),7B%22serviceNodeld},22%3A+%,221%22%7D&method=get_node
Accept: */*
Content-Type: application/json

| info&id=1 HTTP/1.1

conpaas.mysql.server.manager.internals.get_service_info()

Description:

HTTP GET method. Returns the current state of the manager.

Parameters:

param (str) — serviceNodeld is a VMID of an existing service node.
Returns:

HttpJsonResponse - JSON response with the description of the state.

Raises:

ManagerException

Example

GET /7method=get_service_info&id=1 HTTP/1.1
Accept: */*
Content-Type: application/json

conpaas.mysql.server.manager.internals.set_up_replica_master()

Description:

HTTP POST method. Sets up a replica master node.
Parameters:

id — new replica master id.

Returns:

HttpJsonResponse - JSON response with details about the new node. Man-
agerException if something went wrong.

Raises:

ManagerException

conpaas.mysql.server.manager.internals.set_up_replica_slave()

Description:

HTTP POST method. Sets up a replica master node.

Parameters:

id — new replica slave id.
Returns:

HttpJsonResponse - JSON response with details about the new node. Man-
agerException if something went wrong.

Raises:

ManagerException

conpaas.mysql.server.manager.internals.shutdown()

Description:

HTTP POST method. Shuts down the manager service.

Parameters:

id — new replica slave id.
Returns:

HttpJsonResponse - JSON response with details about the status of a manager
node: :py:attr‘'S EPILOGUE‘. ManagerException if something went wrong.

Raises:

ManagerException

conpaas.mysql.server.manager.internals.get_service_performance()

Description:

HTTP GET method. Placeholder for obtaining performance metrics.
Parameters:

kwargs (dict) — Additional parameters.

Returns:

HttpJsonResponse — returns metrics
Raises:

Example

GET /7method=get_service_performance&id=1 HTTP/1.1
Accept: */*
Content-Type: application/json

6 Conclusion

References

10

