
ConPaaS Documentation
Release 1.3.1

The ConPaaS team <info@conpaas.eu>

November 14, 2013

CONTENTS

1 Installation 1
1.1 Director installation . 1
1.2 Command line tool installation . 4
1.3 Frontend installation . 5
1.4 Creating A ConPaaS Services VM Image . 6
1.5 ConPaaS on Amazon EC2 . 7
1.6 ConPaaS on OpenNebula . 8

2 User Guide 11
2.1 Usage overview . 11
2.2 Tutorial: hosting WordPress in ConPaaS . 13
2.3 The PHP Web hosting service . 14
2.4 The Java Web hosting service . 15
2.5 The MySQL database service . 15
2.6 The Scalarix key-value store service . 16
2.7 The MapReduce service . 16
2.8 The TaskFarm service . 16
2.9 The XtreemFS service . 17
2.10 The HTC service . 18

3 Internals 21
3.1 ConPaaS directory structure . 21
3.2 Scripts and config files directory structure . 23
3.3 Manager states . 24
3.4 Files to be modified . 24
3.5 Files to be added . 24

Index 25

i

ii

CHAPTER

ONE

INSTALLATION

ConPaaS is a Platform-as-a-Service system. It aims at simplifying the deployment and management of applications in
the Cloud.

The central component of ConPaaS, called ConPaaS Director (cpsdirector), is responsible for handling user authen-
tication, creating new applications, handling their life-cycle and much more. cpsdirector is a web service exposing
all its functionalities via an HTTP-based API.

ConPaaS can be used either via a command line interface called cpsclient or through a web frontend (cpsfrontend).
This document explains how to install and configure all the aforementioned components.

ConPaaS’s cpsdirector and its two clients, cpsclient and cpsfrontend, can be installed on your own hardware or on
virtual machines running on public or private clouds. If you wish to install them on Amazon EC2, the Official Debian
Wheezy EC2 image (ami-1d620e74) is known to work well. Please note that the root account is disabled and that you
should instead login as admin.

ConPaaS services are designed to run either in an OpenNebula cloud installation or in the Amazon Web Services cloud.

Installing ConPaaS requires to take the following steps:

1. Choose a VM image customized for hosting the services, or create a new one. Details on how to do this vary
depending on the choice of cloud where ConPaaS will run. Instructions on how to find or create a ConPaaS
image suitable to run on Amazon EC2 can be found in ConPaaS on Amazon EC2. The section ConPaaS on
OpenNebula describes how to create a ConPaaS image for OpenNebula.

2. Install and configure cpsdirector as explained in Director installation. All system configuration takes place in
the director.

3. Install and configure cpsclient as explained in Command line tool installation.

4. Install cpsfrontend and configure it to use your ConPaaS director as explained in Frontend installation.

1.1 Director installation

The ConPaaS Director is a web service that allows users to manage their ConPaaS applications. Users can create,
configure and terminate their cloud applications through it. This section describes the process of setting up a ConPaaS
director on a Debian GNU/Linux system. Although the ConPaaS director might run on other distributions, only Debian
versions 6.0 (Squeeze) and 7.0 (Wheezy) are officially supported. Also, only official Debian APT repositories should
be enabled in /etc/apt/sources.list and /etc/apt/sources.list.d/.

cpsdirector is available here: http://www.conpaas.eu/dl/cpsdirector-1.3.1.tar.gz. The tarball includes an installation
script called install.sh for your convenience. You can either run it as root or follow the installation procedure
outlined below in order to setup your ConPaaS Director installation.

1

http://www.conpaas.eu
https://console.aws.amazon.com/ec2/v2/home?region=us-east-1#Images:filter=all-images;platform=all-platforms;visibility=public-images;search=ami-1d620e74
https://console.aws.amazon.com/ec2/v2/home?region=us-east-1#Images:filter=all-images;platform=all-platforms;visibility=public-images;search=ami-1d620e74
http://www.conpaas.eu/dl/cpsdirector-1.3.1.tar.gz

ConPaaS Documentation, Release 1.3.1

1. Install the required packages:

$ sudo apt-get update
$ sudo apt-get install build-essential python-setuptools python-dev
$ sudo apt-get install libapache2-mod-wsgi libcurl4-openssl-dev

2. Make sure that your system’s time and date are set correctly by installing and running ntpdate:

$ sudo apt-get install ntpdate
$ sudo ntpdate 0.us.pool.ntp.org

3. Download http://www.conpaas.eu/dl/cpsdirector-1.3.1.tar.gz and uncompress it

4. Run make install as root

5. After all the required packages are installed, you will get prompted for your hostname. Please provide your
public IP address / hostname

6. Edit /etc/cpsdirector/director.cfg providing your cloud configuration. Among other things, you
will have to choose an Amazon Machine Image (AMI) in case you want to use ConPaaS on Amazon EC2, or
an OpenNebula image if you want to use ConPaaS on OpenNebula. Section ConPaaS on Amazon EC2 explains
how to use the Amazon Machine Images provided by the ConPaaS team, as well as how to make your own
images if you wish to do so. A description of how to create an OpenNebula image suitable for ConPaaS is
available in ConPaaS on OpenNebula.

The installation process will create an Apache VirtualHost for the ConPaaS director in
/etc/apache2/sites-available/conpaas-director. There should be no need for you to mod-
ify such a file, unless its defaults conflict with your Apache configuration.

Run the following commands as root to start your ConPaaS director for the first time:

$ sudo a2enmod ssl
$ sudo a2ensite conpaas-director
$ sudo service apache2 restart

If you experience any problems with the previously mentioned commands, it might be that the default VirtualHost
created by the ConPaaS director installation process conflicts with your Apache configuration. The Apache Virtual
Host documentation might be useful to fix those issues: http://httpd.apache.org/docs/2.2/vhosts/.

Finally, you can start adding users to your ConPaaS installation as follows:

$ sudo cpsadduser.py

1.1.1 SSL certificates

ConPaaS uses SSL certificates in order to secure the communication between you and the director, but also to ensure
that only authorized parties such as yourself and the various component of ConPaaS can interact with the system.

It is therefore crucial that the SSL certificate of your director contains the proper information. In particular, the
commonName field of the certificate should carry the public hostname of your director, and it should match the
hostname part of DIRECTOR_URL in /etc/cpsdirector/director.cfg. The installation procedure takes
care of setting up such a field. However, should your director hostname change, please ensure you run the following
commands:

$ sudo cpsconf.py
$ sudo service apache2 restart

2 Chapter 1. Installation

http://www.conpaas.eu/dl/cpsdirector-1.3.1.tar.gz
http://httpd.apache.org/docs/2.2/vhosts/

ConPaaS Documentation, Release 1.3.1

1.1.2 Director database

The ConPaaS Director uses a SQLite database to store information about registered users and running services. It is
not normally necessary for ConPaaS administrators to directly access such a database. However, should the need arise,
it is possible to inspect and modify the database as follows:

$ sudo apt-get install sqlite3
$ sudo sqlite3 /etc/cpsdirector/director.db

1.1.3 Multi-cloud support

ConPaaS services can be created and scaled on multiple heterogeneous clouds.

In order to configure cpsdirector to use multiple clouds, you need to set the OTHER_CLOUDS vari-
able in the [iaas] section of /etc/cpsdirector/director.cfg. For each cloud name defined in
OTHER_CLOUDS you need to create a new configuration section named after the cloud itself. Please refer to
/etc/cpsdirector/director.cfg.multicloud-example for an example.

1.1.4 Virtual Private Networks with IPOP

Network connectivity between private clouds running on different networks can be achieved in ConPaaS by using
IPOP (IP over P2P).

IPOP is useful when you need to deploy ConPaaS instances across multiple clouds. IPOP adds a virtual network
interface to all ConPaaS instances belonging to an application, allowing services to communicate over a virtual private
network as if they were deployed on the same LAN. This is achieved transparently to the user and applications - the
only configuration needed to enable IPOP is to determine the network’s base IP address, mask, and the number of IP
addresses in this virtual network that are allocated to each service.

VPN support in ConPaaS is per-application: each application you create will get its own IPOP Virtual Private Network.
VMs running in the same application will be able to communicate with each other.

In order to enable IPOP you need to set the following variables in /etc/cpsdirector/director.cfg:

• VPN_BASE_NETWORK

• VPN_NETMASK

• VPN_SERVICE_BITS

Unless you need to access 172.16.0.0/12 networks, the default settings available in
/etc/cpsdirector/director.cfg.example are probably going to work just fine.

The maximum number of services per application, as well as the number of agents per service, is influenced by your
choice of VPN_NETMASK and VPN_SERVICE_BITS:

services_per_application = 2^VPN_SERVICE_BITS
agents_per_service = 2^(32 - NETMASK_CIDR - VPN_SERVICE_BITS) - 1

For example, by using 172.16.0.0 for VPN_BASE_NETWORK, 255.240.0.0 (/12) for VPN_NETMASK, and 5
VPN_SERVICE_BITS, you will get a 172.16.0.0/12 network for each of your applications. Such a network space
will be then logically partitioned between services in the same application. With 5 bits to identify the service, you will
get a maximum number of 32 services per application (2^5) and 32767 agents per service (2^(32-12-5)-1).

Optional: specify your own bootstrap nodes. When two VMs use IPOP, they need a bootstrap node to find each
other. IPOP comes with a default list of bootstrap nodes from PlanetLab servers which is enough for most use
cases. However, you may want to specify your own bootstrap nodes (replacing the default list). Uncomment and

1.1. Director installation 3

http://www.grid-appliance.org/wiki/index.php/IPOP

ConPaaS Documentation, Release 1.3.1

set VPN_BOOTSTRAP_NODES to the list of addresses of your bootstrap nodes, one address per line. A bootstrap
node address specifies a protocol, an IP address and a port. For example:

VPN_BOOTSTRAP_NODES =
udp://192.168.35.2:40000
tcp://192.168.122.1:40000
tcp://172.16.98.5:40001

1.1.5 Troubleshooting

There are a few things you can check if for some reason your Director installation is not behaving as expected.

If you cannot create services, this is what you should try to do on your Director:

1. Run the cpscheck.py command as root to attempt an automatic detection of possible misconfigurations.

2. Check your system’s time and date settings as explained previously.

3. Test network connectivity between the director and the virtual machines deployed on the cloud(s) you are using.

4. Check the contents of /var/log/apache2/director-access.log and
/var/log/apache2/director-error.log.

If services get created, but they fail to startup properly, you should try to ssh into your manager VM as root and:

1. Make sure that a ConPaaS manager process has been started:

root@conpaas:~# ps x | grep cpsmanage[r]
968 ? Sl 0:02 /usr/bin/python /root/ConPaaS/sbin/manager/php-cpsmanager -c /root/config.cfg -s 192.168.122.15

2. If a ConPaaS manager process has not been started, you should check if the manager VM can download a copy
of the ConPaaS source code from the director. From the manager VM:

root@conpaas:~# wget --ca-certificate /etc/cpsmanager/certs/ca_cert.pem \
‘awk ’/BOOTSTRAP/ { print $3 }’ /root/config.cfg‘/ConPaaS.tar.gz

The URL used by your manager VM to download the ConPaaS source code depends on the value you have set
on your Director in /etc/cpsdirector/director.cfg for the variable DIRECTOR_URL.

3. See if your manager’s port 443 is open and reachable from your Director. In the following example, our man-
ager’s IP address is 192.168.122.15 and we are checking if the director can contact the manager on port 443:

root@conpaas-director:~# nmap -p443 192.168.122.15
Starting Nmap 6.00 (http://nmap.org) at 2013-05-14 16:17 CEST
Nmap scan report for 192.168.122.15
Host is up (0.00070s latency).
PORT STATE SERVICE
443/tcp open https

Nmap done: 1 IP address (1 host up) scanned in 0.08 seconds

4. Check the contents of /root/manager.err, /root/manager.out and
/var/log/cpsmanager.log.

1.2 Command line tool installation

The command line tool, called cpsclient, can be installed as root or as a regular user. Please note that libcurl
development files (binary package libcurl4-openssl-dev on Debian/Ubuntu systems) need to be installed on
your system.

4 Chapter 1. Installation

ConPaaS Documentation, Release 1.3.1

As root:

$ sudo easy_install http://www.conpaas.eu/dl/cpsclient-1.3.1.tar.gz

Or, if you do not have root privileges, cpsclient can also be installed in a Python virtual environment if
virtualenv is available on your machine:

$ virtualenv conpaas # create the ’conpaas’ virtualenv
$ cd conpaas
$ source bin/activate # activate it
$ easy_install http://www.conpaas.eu/dl/cpsclient-1.3.1.tar.gz

1.3 Frontend installation

As for the Director, only Debian versions 6.0 (Squeeze) and 7.0 (Wheezy) are supported, and no external APT reposi-
tory should be enabled. In a typical setup Director and Frontend are installed on the same host, but such does not need
to be the case.

The ConPaaS Frontend can be downloaded from http://www.conpaas.eu/dl/cpsfrontend-1.3.1.tar.gz.

After having uncompressed it you should install the required Debian packages:

$ sudo apt-get install libapache2-mod-php5 php5-curl

Copy all the files contained in the www directory underneath your web server document root. For example:

$ sudo cp -a www/ /var/www/conpaas/

Copy conf/main.ini and conf/welcome.txt in your ConPaaS Director configuration folder
(/etc/cpsdirector). Modify those files to suit your needs:

$ sudo cp conf/{main.ini,welcome.txt} /etc/cpsdirector/

Create a config.php file in the web server directory where you have chosen to install the frontend.
config-example.php is a good starting point:

$ sudo cp www/config-example.php /var/www/conpaas/config.php

Note that config.php must contain the CONPAAS_CONF_DIR option, pointing to the directory mentioned in the
previous step

By default, PHP sets a default maximum size for uploaded files to 2Mb (and 8Mb to HTTP POST requests). How-
ever, in the web frontend, users will need to upload larger files (for example, a WordPress tarball is about 5Mb, a
MySQL dump can be tens of Mb). To set higher limits, set the properties post_max_size and upload_max_filesize
in file /etc/php5/apache2/php.ini. Note that property upload_max_filesize cannot be larger than property
post_max_size.

Enable SSL if you want to use your frontend via https, for example by issuing the following commands:

$ sudo a2enmod ssl
$ sudo a2ensite default-ssl

Details about the SSL certificate you want to use have to be specified in
/etc/apache2/sites-available/default-ssl.

As a last step, restart your Apache web server:

$ sudo service apache2 restart

At this point, your front-end should be working!

1.3. Frontend installation 5

http://www.conpaas.eu/dl/cpsfrontend-1.3.1.tar.gz

ConPaaS Documentation, Release 1.3.1

1.4 Creating A ConPaaS Services VM Image

Various services require certain packages and configurations to be present in the VM image. ConPaaS provides
facilities for creating specialized VM images that contain these dependencies. Furthermore, for the convenience of
users, there are prebuilt Amazon AMIs that contain the dependencies for all available services. If you intend to run
ConPaaS on Amazon EC2 and do not need a specialized VM image, then you can skip this section and proceed to
ConPaaS on Amazon EC2.

1.4.1 Configuring your VM image

The configuration file for customizing your VM image is located at conpaas-services/scripts/create_vm/create-img-
script.cfg.

In the CUSTOMIZABLE section of the configuration file, you can define whether you plan to run ConPaaS on
Amazon EC2 or OpenNebula. Depending on the virtualization technology that your target cloud uses, you should
choose either KVM or Xen for the hypervisor. Note that for Amazon EC2 this variable needs to be set to Xen. Please
do not make the recommended size for the image file smaller than the default. The optimize flag enables certain
optimizations to reduce the necessary packages and disk size. These optimizations allow for smaller VM images and
faster VM startup.

In the SERVICES section of the configuration file, you have the opportunity to disable any service that you do not
need in your VM image. If a service is disabled, its package dependencies are not installed in the VM image. Paired
with the optimize flag, the end result will be a minimal VM image that runs only what you need.

Once you are done with the configuration, you should run this command in the create_vm directory:

$ python create-img-script.py

This program generates a script file named create-img-conpaas.sh. This script is based on your specific configurations.

1.4.2 Creating your VM image

To create the image you can execute create-img-conpaas.sh in any 64-bit Debian or Ubuntu machine. Please note
that you will need to have root privileges on such a system. In case you do not have root access to a Debian or
Ubuntu machine please consider installing a virtual machine using your favorite virtualization technology, or running
a Debian/Ubuntu instance in the cloud.

1. Make sure your system has the following executables installed (they are usually located in /sbin or
/usr/sbin, so make sure these directories are in your $PATH): dd parted losetup kpartx mkfs.ext3 tune2fs
mount debootstrap chroot umount grub-install

2. It is particularly important that you use Grub version 2. To install it:

sudo apt-get install grub2

3. Execute create-img-conpaas.sh as root.

The last step can take a very long time. If all goes well, the final VM image is stored as conpaas.img. This file is later
registered to your target IaaS cloud as your ConPaaS services image.

1.4.3 If things go wrong

Note that if anything fails during the image file creation, the script will stop and it will try to revert any change it has
done. However, it might not always reset your system to its original state. To undo everything the script has done,
follow these instructions:

6 Chapter 1. Installation

ConPaaS Documentation, Release 1.3.1

1. The image has been mounted as a separate file system. Find the mounted directory using command df -h.
The directory should be in the form of /tmp/tmp.X.

2. There may be a dev and a proc directories mounted inside it. Unmount everything using:

sudo umount /tmp/tmp.X/dev /tmp/tmp.X/proc /tmp/tmp.X

3. Find which loop device your using:

sudo losetup -a

4. Remove the device mapping:

sudo kpartx -d /dev/loopX

5. Remove the binding of the loop device:

sudo losetup -d /dev/loopX

6. Delete the image file

7. Your system should be back to its original state.

1.5 ConPaaS on Amazon EC2

The Web Hosting Service is capable of running over the Elastic Compute Cloud (EC2) of Amazon Web Services
(AWS). This section describes the process of configuring an AWS account to run the Web Hosting Service. You can
skip this section if you plan to install ConPaaS over OpenNebula.

If you are new to EC2, you will need to create an account on the Amazon Elastic Compute Cloud. A very good
introduction to EC2 is Getting Started with Amazon EC2 Linux Instances.

1.5.1 Pre-built Amazon Machine Images

ConPaaS requires the usage of an Amazon Machine Image (AMI) to contain the dependencies of its processes. For
your convenience we provide a pre-built public AMI, already configured and ready to be used on Amazon EC2, for
each availability zone supported by ConPaaS. The AMI IDs of said images are:

• ami-f4c75fc4 United States West (Oregon)

• ami-c3045aaa United States East (Northern Virginia)

• ami-b79271c0 Europe West (Ireland)

You can use one of these values when configuring your ConPaaS director installation as described in Director instal-
lation.

1.5.2 Registering your custom VM image to Amazon EC2

Using pre-built Amazon Machine Images is the recommended way of running ConPaaS on Amazon EC2, as described
in the previous section. However, you can also create a new Amazon Machine Image yourself, for example in case
you wish to run ConPaaS in a different Availability Zone or if you prefer to use a custom services image. If this is the
case, you should have already created your VM image (conpaas.img) as explained in Creating A ConPaaS Services
VM Image.

1.5. ConPaaS on Amazon EC2 7

http://aws.amazon.com/ec2/
http://docs.amazonwebservices.com/AWSEC2/latest/GettingStartedGuide/

ConPaaS Documentation, Release 1.3.1

Amazon AMIs are either stored on Amazon S3 (i.e. S3-backed AMIs) or on Elastic Block Storage (i.e. EBS-backed
AMIs). Each option has its own advantages; S3-backed AMIs are usually more cost-efficient, but if you plan to use
t1.micro (free tier) your VM image should be hosted on EBS.

For an EBS-backed AMI, you should either create your conpaas.img on an Amazon EC2 instance, or transfer the
image to one. Once conpaas.img is there, you should execute register-image-ec2-ebs.sh as root on the EC2 instance to
register your AMI. The script requires your EC2_ACCESS_KEY and EC2_SECRET_KEY to proceed. At the end,
the script will output your new AMI ID. You can check this in your Amazon dashboard in the AMI section.

For a S3-backed AMI, you do not need to register your image from an EC2 instance. Simply run register-image-ec2-
s3.sh where you have created your conpaas.img. Note that you need an EC2 certificate with private key to be able to
do so. Registering an S3-backed AMI requires administrator privileges. More information on Amazon credetials can
be found at About AWS Security Credentials.

1.5.3 Security Group

An AWS security group is an abstraction of a set of firewall rules to limit inbound traffic. The default policy of a new
group is to deny all inbound traffic. Therefore, one needs to specify a whitelist of protocols and destination ports that
are accessible from the outside. The following ports should be open for all running instances:

• TCP ports 80, 443, 5555, 8000, 8080 and 9000 – used by the Web Hosting service

• TCP port 3306 – used by the MySQL service

• TCP ports 8020, 8021, 8088, 50010, 50020, 50030, 50060, 50070, 50075, 50090, 50105, 54310 and 54311 –
used by the Map Reduce service

• TCP ports 4369, 14194 and 14195 – used by the Scalarix service

• TCP ports 2633, 8475, 8999 – used by the TaskFarm service

• TCP ports 32636, 32638 and 32640 – used by the XtreemFS service

AWS documentation is available at http://docs.amazonwebservices.com/AWSEC2/latest/UserGuide/index.html?using-
network-security.html.

1.6 ConPaaS on OpenNebula

The Web Hosting Service is capable of running over an OpenNebula installation. This section describes the process of
configuring OpenNebula to run ConPaaS. You can skip this section if you plan to deploy ConPaaS over Amazon Web
Services.

1.6.1 Registering your ConPaaS image to OpenNebula

This section assumed that you already have created a ConPaaS services image as explained in Creating A ConPaaS
Services VM Image. Upload your image (i.e. conpaas.img) to your OpenNebula headnode. The headnode is where
OpenNebula services are running. You need have a valid OpenNebula account on the headnode (i.e. onevm list
works!).

To register your image, you should execute register-image-opennebula.sh on the headnode. register-image-
opennebula.sh needs the path to conpaas.img as well as OpenNebula’s datastore ID.

To get the datastore ID, you should execute this command on the headnode:

$ onedatastore list

The output of register-image-opennebula.sh will be your ConPaaS OpenNebula image ID.

8 Chapter 1. Installation

http://docs.aws.amazon.com/AWSSecurityCredentials/1.0/AboutAWSCredentials.html
http://docs.amazonwebservices.com/AWSEC2/latest/UserGuide/index.html?using-network-security.html
http://docs.amazonwebservices.com/AWSEC2/latest/UserGuide/index.html?using-network-security.html

ConPaaS Documentation, Release 1.3.1

1.6.2 Make sure OpenNebula is properly configured

OpenNebula’s OCCI daemon is used by ConPaaS to communicate with your OpenNebula cluster.

1. Ensure the OCCI server configuration file /etc/one/occi-server.conf contains the following lines in
section instance_types:

:custom:
:template: custom.erb

2. At the end of the OCCI profile file /etc/one/occi_templates/common.erb from your OpenNebula
installation, append the following lines:

<% @vm_info.each(’OS’) do |os| %>
<% if os.attr(’TYPE’, ’arch’) %>
OS = [arch = "<%= os.attr(’TYPE’, ’arch’).split(’/’).last %>"]

<% end %>
<% end %>
GRAPHICS = [type="vnc",listen="0.0.0.0",port="-1"]

These new lines adds a number of improvements from the standard version:

• The match for OS TYPE:arch allows the caller to specify the architecture of the machine.

• The last line allows for using VNC to connect to the VM. This is very useful for debugging purposes and
is not necessary once testing is complete.

3. Make sure you started OpenNebula’s OCCI daemon:

sudo occi-server start

Please note that, by default, OpenNebula’s OCCI server performs a reverse DNS lookup for each and every request it
handles. This can lead to very poor performances in case of lookup issues. It is recommended not to install avahi-
daemon on the host where your OCCI server is running. If it is installed, you can remove it as follows:

sudo apt-get remove avahi-daemon

If your OCCI server still performs badly after removing avahi-daemon, we suggest to disable reverse lookups on your
OCCI server by editing /usr/lib/ruby/$YOUR_RUBY_VERSION/webrick/config.rb and replacing the
line:

:DoNotReverseLookup => nil,

with:

:DoNotReverseLookup => true,

1.6. ConPaaS on OpenNebula 9

ConPaaS Documentation, Release 1.3.1

10 Chapter 1. Installation

CHAPTER

TWO

USER GUIDE

ConPaaS is an open-source runtime environment for hosting applications in the cloud which aims at offering the full
power of the cloud to application developers while shielding them from the associated complexity of the cloud.

ConPaaS is designed to host both high-performance scientific applications and online Web applications. It runs on a
variety of public and private clouds, and is easily extensible. ConPaaS automates the entire life-cycle of an applica-
tion, including collaborative development, deployment, performance monitoring, and automatic scaling. This allows
developers to focus their attention on application-specific concerns rather than on cloud-specific details.

ConPaaS is organized as a collection of services, where each service acts as a replacement for a commonly used
runtime environment. For example, to replace a MySQL database, ConPaaS provides a cloud-based MySQL service
which acts as a high-level database abstraction. The service uses real MySQL databases internally, and therefore makes
it easy to port a cloud application to ConPaaS. Unlike a regular centralized database, however, it is self-managed and
fully elastic: one can dynamically increase or decrease its processing capacity by requesting it to reconfigure itself
with a different number of virtual machines.

ConPaaS currently contains nine services:

• Two Web hosting services respectively specialized for hosting PHP and JSP applications;

• MySQL database service;

• Scalarix service offering a scalable in-memory key-value store;

• MapReduce service providing the well-known high-performance computation framework;

• TaskFarming service high-performance batch processing;

• Selenium service for functional testing of web applications;

• XtreemFS service offering a distributed and replicated file system;

• HTC service providing a throughput-oriented scheduler for bags of tasks

submitted on demand.

ConPaaS applications can be composed of any number of services. For example, a bio-informatics application may
make use of a PHP and a MySQL service to host a Web-based frontend, and link this frontend to a MapReduce backend
service for conducting high-performance genomic computations on demand.

2.1 Usage overview

Most operations in ConPaaS can be done using the ConPaaS frontend, which gives a Web-based interface to the
system. The front-end allows users to register, create services, upload code and data to the services, and configure
each service.

11

ConPaaS Documentation, Release 1.3.1

• The Dashboard page displays the list of services currently active in the system.

• Each service comes with a separate page which allows one to configure it, upload code and data, and scale it up
and down.

All the functionalities of the frontend are also available using a command-line interface. This allows one to script
commands for ConPaaS. The command-line interface also features additional advanced functionalities, which are not
available using the front-end.

2.1.1 Controlling services using the front-end

The ConPaaS front-end provides a simple and intuitive interface for controlling services. We discuss here the features
that are common to all services, and refer to the next sections for service-specific functionality.

Create a service. Click on “create new service”, then select the service you want to create. This operation starts a
new “Manager” virtual machine instance. The manager is in charge of taking care of the service, but it does not
host applications itself. Other instances in charge of running the actual application are called “agent” instances.

Start a service. Click on “start”, this will create a new virtual machine which can host applications, depending on the
type of service.

Rename the service. By default all new services are named “New service.” To give a meaningful name to a service,
click on this name in the service-specific page and enter a new name.

Check the list of virtual instances. A service can run using one or more virtual machine instances. The service-
specific page shows the list of instances, their respective IP addresses, and the role each instance is currently
having in the service. Certain services use a single role for all instances, while other services specialize different
instances to take different roles. For example, the PHP Web hosting service distinguishes three roles: load
balancers, web servers, and PHP servers.

Scale the service up and down. When a service is started it uses a single “agent” instance. To add more capacity,
or to later reduce capacity you can vary the number of instances used by the service. Click the numbers below
the list of instances to request adding or removing servers. The system reconfigures itself without any service
interruption.

Stop the service. When you do not need to run the application any more, click “stop” to stop the service. This stops
all instances except the manager which keeps on running.

Terminate the service. Click “terminate” to terminate the service. At this point all the state of the service manager
will be lost.

2.1.2 Controlling services using the command-line interfaces

Command-line interfaces allow one to control services without using the graphical interface. The command-line
interfaces also offer additional functionalities for advanced usage of the services. See Command line tool installation
to install it.

List all options of the command-line tool.

$ cpsclient.py help

Create a service.

$ cpsclient.py create php

List available services.

$ cpsclient.py list

12 Chapter 2. User Guide

ConPaaS Documentation, Release 1.3.1

List service-specific options.

in this example the id of our service is 1
$ cpsclient.py usage 1

Scale the service up and down.

$ cpsclient.py usage 1
$ cpsclient.py add_nodes 1 1 1 0
$ cpsclient.py remove_nodes 1 1 1 0

2.1.3 The credit system

In Cloud computing, resources come at a cost. ConPaaS reflects this reality in the form of a credit system. Each user
is given a number of credits that she can use as she wishes. One credit corresponds to one hour of execution of one
virtual machine. The number of available credits is always mentioned in the top-right corner of the front-end. Once
credits are exhausted, your running instances will be stopped and you will not be able to use the system until the
administrator decides to give additional credit.

Note that every service consumes credit, even if it is in “stopped” state. The reason is that stopped services still have
one “manager” instance running. To stop using credits you must completely terminate your services.

2.2 Tutorial: hosting WordPress in ConPaaS

This short tutorial illustrates the way to use ConPaaS to install and host WordPress (http://www.wordpress.org), a
well-known third-party Web application. WordPress is implemented in PHP using a MySQL database so we will need
a PHP and a MySQL service in ConPaaS.

1. Open the ConPaaS front-end in your Web browser and log in. If necessary, create yourself a user account and
make sure that you have at least 5 credits. Your credits are always shown in the top-right corner of the front-end.
One credit corresponds to one hour of execution of one virtual machine instance.

2. Create a MySQL service, start it, reset its password. Copy the IP address of the master node somewhere, we
will need it in step 5.

3. Create a PHP service, start it.

4. Download a WordPress tarball from http://www.wordpress.org, and expand it in your computer.

5. Copy file wordpress/wp-config-sample.php to wordpress/wp-config.php and edit the
DB_NAME, DB_USER, DB_PASSWORD and DB_HOST variables to point to the database service. You can
choose any database name for the DB_NAME variable as long as it does not contain any special character. We
will reuse the same name in step 7.

6. Rebuild a tarball of the directory such that it will expand in the current directory rather than in a wordpress
subdirectory. Upload this tarball to the PHP service, and make the new version active.

7. Connect to the database using the command proposed by the frontend. Create a database of the same name as
in step 5 using command “CREATE DATABASE databasename;“

8. Open the page of the PHP service, and click “access application.” Your browser will dis-
play nothing because the application is not fully installed yet. Visit the same site at URL
http://xxx.yyy.zzz.ttt/wp-admin/install.php and fill in the requested information (site name
etc).

9. That’s it! The system works, and can be scaled up and down.

2.2. Tutorial: hosting WordPress in ConPaaS 13

http://www.wordpress.org
http://www.wordpress.org

ConPaaS Documentation, Release 1.3.1

Note that, for this simple example, the “file upload” functionality of WordPress will not work if you scale the system
up. This is because WordPress stores files in the local file system of the PHP server where the upload has been
processed. If a subsequent request for this file is processed by another PHP server then the file will not be found. The
solution to that issue consists in using the shared file-system service called XtreemFS to store the uploaded files.

2.3 The PHP Web hosting service

The PHP Web hosting service is dedicated to hosting Web applications written in PHP. It can also host static Web
content.

2.3.1 Uploading application code

PHP applications can be uploaded as an archive or via the Git version control system.

Archives can be either in the tar or zip format. Attention: the archive must expand in the current directory rather
than in a subdirectory. The service does not immediately use new applications when they are uploaded. The frontend
shows the list of versions that have been uploaded; choose one version and click “make active” to activate it.

Note that the frontend only allows uploading archives smaller than a certain size. To upload large archives, you must
use the command-line tools or Git.

The following example illustrates how to upload an archive to the service with id 1 using the cpsclient.py
command line tool:

$ cpsclient.py upload_code 1 path/to/archive.zip

To enable Git-based code uploads you first need to upload your SSH public key. This can be done either using the
command line tool:

$ cpsclient.py upload_key serviceid filename

An SSH public key can also be uploaded using the ConPaaS frontend by choosing the “checking out repository” option
in the “Code management” section of your PHP service. Once the key is uploaded the frontend will show the git
command to be executed in order to obtain a copy of the repository. The repository itself can then be used as usual. A
new version of your application can be uploaded with git push.

user@host:~/code$ git add index.php
user@host:~/code$ git commit -am "New index.php version"
user@host:~/code$ git push origin master

2.3.2 Access the application

The frontend gives a link to the running application. This URL will remain valid as long as you do not stop the service.

2.3.3 Using PHP sessions

PHP normally stores session state in its main memory. When scaling up the PHP service, this creates problems because
multiple PHP servers running in different VM instances cannot share their memory. To support PHP sessions the PHP
service features a key-value store where session states can be transparently stored. To overwrite PHP session functions
such that they make use of the shared key-value store, the PHP service includes a standard “phpsession.php” file at the
beginning of every .php file of your application that uses sessions, i.e. in which function session_start() is encountered.
This file overwrites the session handlers using the session_set_save_handler() function.

14 Chapter 2. User Guide

ConPaaS Documentation, Release 1.3.1

This modification is transparent to your application so no particular action is necessary to use PHP sessions in Con-
PaaS.

2.3.4 Debug mode

By default the PHP service does not display anything in case PHP errors occur while executing the application.
This setting is useful for production, when you do not want to reveal internal information to external users. While
developing an application it is however useful to let PHP display errors.

$ cpsclient.py toggle_debug serviceid

2.4 The Java Web hosting service

The Java Web hosting service is dedicated to hosting Web applications written in Java using JSP or servlets. It can
also host static Web content.

2.4.1 Uploading application code

Applications in the Java Web hosting service can be uploaded in the form of a war file or via the Git version control
system. The service does not immediately use new applications when they are uploaded. The frontend shows the list
of versions that have been uploaded; choose one version and click “make active” to activate it.

Note that the frontend only allows uploading archives smaller than a certain size. To upload large archives, you must
use the command-line tools or Git.

The following example illustrates how to upload an archive with the cpsclient.py command line tool:

$ cpsclient.py upload_code serviceid archivename

To upload new versions of your application via Git, please refer to section Uploading application code.

2.4.2 Access the application

The frontend gives a link to the running application. This URL will remain valid as long as you do not stop the service.

2.5 The MySQL database service

The MySQL service provides the famous database in the form of a ConPaaS service. When scaling the service up
and down, it creates (or deletes) database replicas using the master-slave mechanism. At the moment, the service does
not implement load balancing of database queries between the master and its slaves. Replication therefore provides
fault-tolerance properties but no performance improvement.

2.5.1 Resetting the user password

When a MySQL service is started, a new user mysqldb is created with a randomly-generated password. To gain
access to the database you must first reset this password. Click “Reset password” in the front-end, and choose the new
password.

Note that the user password is not kept by the ConPaaS frontend. If you forget the password the only thing you can do
is reset the password again to a new value.

2.4. The Java Web hosting service 15

ConPaaS Documentation, Release 1.3.1

2.5.2 Accessing the database

The frontend provides the command-line to access the database. Copy-paste this command in a terminal. You will be
asked for the user password, after which you can use the database as you wish.

Note that the mysqldb user has extended privileges. It can create new databases, new users etc.

2.5.3 Uploading a database dump

The ConPaaS frontend allows to easily upload database dumps to a MySQL service. Note that this functionality is
restricted to dumps of a relatively small size. To upload larger dumps you can always use the regular mysql command
for this:

$ mysql mysql-ip-address -u mysqldb -p < dumpfile.sql

2.6 The Scalarix key-value store service

The Scalarix service provides an in-memory key-value store. It is highly scalable and fault-tolerant. This service
deviates slightly from the organization of other services in that it does not have a separate manager virtual machine
instance. Scalarix is fully symmetric so any Scalarix node can act as a service manager.

2.6.1 Accessing the key-value store

Clients of the Scalarix service need the IP address of (at least) one node to connect to the service. Copy-paste the
address of any of the running instances in the client. A good choice is the first instance in the list: when scaling the
service up and down, other instances may be created or removed. The first instance will however remain across these
reconfigurations, until the service is terminated.

2.6.2 Managing the key-value store

Scalarix provides its own Web-based interface to monitor the state and performance of the key-value store, manually
add or query key-value pairs, etc. For convenience reasons the ConPaaS front-end provides a link to this interface.

2.7 The MapReduce service

The MapReduce service provides the well-known Apache Hadoop framework in ConPaaS. Once the MapReduce
service is created and started, the front-end provides useful links to the Hadoop namenode, the job tracker, and to a
graphical interface which allows to upload/download data to/from the service and issue MapReduce jobs.

IMPORTANT: This service requires virtual machines with at least 384 MB of RAM to function properly.

2.8 The TaskFarm service

The TaskFarm service provides a bag of tasks scheduler for ConPaaS. The user needs to provide a list of independent
tasks to be executed on the cloud and a file system location where the tasks can read input data and/or write output
data to it. The service first enters a sampling phase, where its agents sample the runtime of the given tasks on different
cloud instances. The service then based on the sampled runtimes, provides the user with a list of schedules. Schedules

16 Chapter 2. User Guide

ConPaaS Documentation, Release 1.3.1

are presented in a graph and the user can choose between cost/makespan of different schedules for the given set of
tasks.fter the choice is made the service enters the execution phase and completes the execution of the rest of the tasks
according to the user’s choice.

2.8.1 Preparing the ConPaaS services image

By default, the TaskFarm service can execute the user code that is supported by the default ConPaaS services image. If
user’s tasks depend on specific libraries and/or applications that do not ship with the default ConPaaS services image,
the user needs to configure the ConPaaS services image accordingly and use the customized image ID in ConPaaS
configuration files.

2.8.2 The bag of tasks file

The bag of tasks file is a simple plain text file that contains the list of tasks along with their arguments to be executed.
The tasks are separated by new lines. This file needs to be uploaded to the service, before the service can start sampling.
Below is an example of a simple bag of tasks file containing three tasks:

/bin/sleep 1 && echo "slept for 1 seconds" >> /mnt/xtreemfs/log
/bin/sleep 2 && echo "slept for 2 seconds" >> /mnt/xtreemfs/log
/bin/sleep 3 && echo "slept for 3 seconds" >> /mnt/xtreemfs/log

The minimum number of tasks required by the service to start sampling is depending on the number of tasks itself, but
a bag with more than thirty tasks is large enough.

2.8.3 The filesystem location

TaskFarm service uses XtreemFS for data input/output. The actual task code can also reside in the XtreemFS. The
user can optionally provide an XtreemFS location which is then mounted on TaskFarm agents.

2.8.4 The demo mode

With large bags of tasks and/or with long running tasks, the TaskFarm service can take a long time to execute the given
bag. The service provides its users with a progress bar and reports the amount of money spent so far. TaskFarm service
also provides a “demo” mode where the users can try the service with custom bags without spending time and money.

2.9 The XtreemFS service

The XtreemFS service provides POSIX compatible storage for ConPaaS. Users can create volumes that can be
mounted remotely or used by other ConPaaS services, or inside applications. An XtreemFS instance consists of
multiple DIR, MRC and OSD servers. The OSDs contain the actual storage, while the DIR is a directory service
and the MRC contains meta data. By default, one instance of each runs inside the first agent virtual machine and the
service can be scaled up and down by adding and removing additional OSD nodes. The XtreemFS documentation can
be found at http://xtreemfs.org/userguide.php.

2.9.1 Accessing volumes directly

Once a volume has been created, it can be directly mounted on a remote site by using the mount.xtreemfs command.
A mounted volume can be used like any local POSIX-compatible filesystem.

2.9. The XtreemFS service 17

http://xtreemfs.org/userguide.php

ConPaaS Documentation, Release 1.3.1

2.9.2 Policies

Different aspects of XtreemFS (e.g. replica- and OSD-selection) can be customised by setting certain policies. Those
policies can be set via the ConPaaS command line client (recommended) or directly via xtfsutil (see the XtreemFS
user guide).

2.9.3 Persistency

If the XtreemFS service is shut down, all its data is permanently lost. If persistency beyond the service runtime
is needed, the XtreemFS service can be moved into a snapshot by using the download_manifest operation of the
command line client. WARNING: This operation will automatically shut down the service. The service and all of its
stored volumes with their data can be moved back into a running ConPaaS service by using the manifest operation.

2.9.4 Important notes

When a service is scaled down by removing OSDs, the data of those OSDs is migrated to the remaining OSDs.
Always make sure there is enough free space for this operation to succeed. Otherwise you risk data loss. The down-
load_manifest operation of the XtreemFS service will also shut the service down. This behaviour might differ from
other ConPaaS services, but is necessary to avoid copying the whole filesystem (which would be a very expensive
operation). This might change in future releases.

2.10 The HTC service

The HTC service provides a throughput-oriented scheduler for bags of tasks submitted on demand for ConPaaS. An
initial bag of tasks is sampled generating a throughput = f(cost) function. The user is allowed at any point, including
upon new tasks submission, to request the latest throughput = f(cost) function and insert his target throughput. After
the first bag is sampled and submitted for execution the user is allowed to add tasks to the job with the corresponding
identifier. The user is allowed at any point, including upon new tasks submission, to request the latest throughput =
f(cost) function and adjust his target throughput. All tasks that are added are immediately submitted for execution
using the latest configuration requested by the user, corresponding to the target throughput.

2.10.1 Available commands

start service_id - prompts the user to specify a mode (’real’ or ’demo’) and type (’batch’, ’online’ or ’workflow’) for
the service. Starts the service under the selected context and initializes all the internal data structures for running the
service.

stop service_id: stops and releases all running VMs that exist in the pool of workers regardless of the tasks
running.

terminate service_id: stops and releases the manager VM along with the running algorithm and existing data
structures.

create_worker service_id type count: adds count workers to the pool returns the worker_ids. The
worker is added to the table. The manager starts the worker on a VM requested of the selected type.

remove_worker service_id worker_id: removes a worker from the condor pool. The worker_id is re-
moved from the table.

create_job service_id .bot_file: creates a new job on the manager and returns a job_id. It uploads the
.bot_file on the manager and assign a queue to the job which will contain the path of all .bot_files submitted to this
job_id.

18 Chapter 2. User Guide

ConPaaS Documentation, Release 1.3.1

sample service_id job_id: samples the job on all available machine types in the cloud according to the HTC
model.

throughput service_id: prompts the user to select a target throughput within [0,TMAX] and returns the cost
for that throughput.

configuration service_id: prompts the user to select a target throughput within [0,TMAX] and returns the
machine configuration required for that throughput. At this point the user can manually create the pool of workers
using create_worker and remove_worker.

select service_id: prompts the user to select a target throughput within [0,TMAX] and creates the pool of
workers needed to obtain that throughput.

submit service_id job_id: submits all the bags in this job_id for execution with the current configuration of
workers.

add service_id job_id .bot_file: submits a .bot_file for execution on demand. The bag is executed with
the existing configuration.

2.10. The HTC service 19

ConPaaS Documentation, Release 1.3.1

20 Chapter 2. User Guide

CHAPTER

THREE

INTERNALS

A ConPaaS service may consist of three main entities: the manager, the agent and the frontend. The (primary) manager
resides in the first VM that is started by the frontend when the service is created and its role is to manage the service
by providing supporting agents, maintaining a stable configuration at any time and by permanently monitoring the
service’s performance. An agent resides on each of the other VMs that are started by the manager. The agent is the
one that does all the work. Note that a service may contain one manager and multiple agents, or multiple managers
that also act as agents.

To implement a new ConPaaS service, you must provide a new manager service, a new agent service and a new
frontend service (we assume that each ConPaaS service can be mapped on the three entities architecture). To ease
the process of adding a new ConPaaS service, we propose a framework which implements common functionality of
the ConPaaS services. So far, the framework provides abstraction for the IaaS layer (adding support for a new cloud
provider should not require modifications in any ConPaaS service implementation) and it also provides abstraction for
the HTTP communication (we assume that HTTP is the preferred protocol for the communication between the three
entities).

3.1 ConPaaS directory structure

You can see below the directory structure of the ConPaaS software. The core folder under src contains the ConPaaS
framework. Any service should make use of this code. It contains the manager http server, which instantiates the
python manager class that implements the required service; the agent http server that instantiates the python agent
class (if the service requires agents); the IaaS abstractions and other useful code.

A new service should be added in a new python module under the ConPaaS/src/services folder.

In the next paragraphs we describe how to add the new ConPaaS service.

3.1.1 Service’s name

The first step in adding a new ConPaaS service is to choose a name for it. This name will be used to construct, in a
standardized manner, the file names of the scripts required by this service (see below). Therefore, the names should
not contain spaces, nor unaccepted characters.

3.1.2 Scripts

To function properly, ConPaaS uses a series of configuration files and scripts. Some of them must be modified by
the administrator, i.e. the ones concerning the cloud infrastructure, and the others are used, ideally unchanged, by
the manager and/or the agent. A newly added service would ideally function with the default scripts. If, however,
the default scripts are not satisfactory (for example the new service would need to start something on the VM, like a

21

ConPaaS Documentation, Release 1.3.1

memcache server) then the developers must supply a new script/config file, that would be used instead of the default
one. This new script’s name must be preceded by the service’s chosen name (as described above) and will be selected
by the frontend at run time to generate the contextualization file for the manager VM. (If the frontend doesn’t find
such a script/config file for a given service, then it will use the default script). Note that some scripts provided for
a service do not replace the default ones, instead they will be concatenated to them (see below the agent and
manager configuration scripts).

Below we give an explanation of the scripts and configuration files used by a ConPaaS service (there are other config-
uration files used by the frontend but these are not relevant to the ConPaaS service). Basically there are two scripts that
a service uses to boot itself up - the manager contextualization script, which is executed after the manager VM booted,
and the agent contextualization script, which is executed after the agent VM booted. These scripts are composed of
several parts, some of which are customizable to the needs of the new service.

In the ConPaaS home folder (CONPAAS_HOME) there is the config folder that contains configuration files in the
INI format and the scripts folder that contains executable bash scripts. Some of these files are specific to the cloud,
other to the manager and the rest to the agent. These files will be concatenated in a single contextualization script, as
described below.

• Files specific to the Cloud:

(1) CONPAAS_HOME/config/cloud/cloud_name.cfg, where cloud_name refers to the clouds supported by the
system (for now OpenNebula and EC2). So there is one such file for each cloud the system supports. These
files are filled in by the administrator. They contain information such as the username and password to access
the cloud, the OS image to be used with the VMs, etc. These files are used by the frontend and the manager, as
both need to ask the cloud to start VMs.

(2) CONPAAS_HOME/scripts/cloud/cloud_name, where cloud_name refers to the clouds supported by the sys-
tem (for now OpenNebula and EC2). So, as above, there is one such file for each cloud the system supports.
These scripts will be included in the contextualization files. For example, for OpenNebula, this file sets up the
network.

• Files specific to the Manager:

(3) CONPAAS_HOME/scripts/manager/manager-setup, which prepares the environment by copying the Con-
PaaS source code on the VM, unpacking it, and setting up the PYTHONPATH environment variable.

(4) CONPAAS_HOME/config/manager/service_name-manager.cfg, which contains configuration variables spe-
cific to the service manager (in INI format). If the new service needs any other variables (like a path to a file
in the source code), it should provide an annex to the default manager config file. This annex must be named
service_name-manager.cfg and will be concatenated to default-manager.cfg

(5) CONPAAS_HOME/scripts/manager/service_name-manager-start, which starts the server manager and any
other programs the service manager might use.

(6) CONPAAS_HOME/sbin/manager/service_name-cpsmanager (will be started by the service_name-manager-
start script), which starts the manager server, which in turn will start the requested manager service.

Scripts (1), (2), (3), (4) and (5) will be used by the frontend to generate the contextualization script for the
manager VM. After this scripts executes, a configuration file containing the concatenation of (1) and (4) will be
put in ROOT_DIR/config.cfg and then (6) is started with the config.cfg file as a parameter that will be forwarded
to the new service.

Examples:

• Files specific to the Agent

They are similar to the files described above for the manager, but this time the contextualization file is generated
by the manager.

22 Chapter 3. Internals

ConPaaS Documentation, Release 1.3.1

3.2 Scripts and config files directory structure

Below you can find the directory structure of the scripts and configuration files described above.

3.2.1 Implementing a new ConPaaS service

In this section we describe how to implement a new ConPaaS service by providing an example which can be used as a
starting point. The new service is called helloworld and will just generate helloworld strings. Thus, the manager will
provide a method, called get_helloworld which will ask all the agents to return a ’helloworld’ string (or another string
chosen by the manager).

We will start by implementing the agent. We will create a class, called HelloWorldAgent, which implements the
required method - get_helloworld, and put it in conpaasservices/helloworld/agent/agent.py (Note: make the directory
structure as needed and providing empty __init__.py to make the directory be recognized as a module path). As you
can see in Listing [lst:helloworldagent], this class uses some functionality provided in the conpaas.core package. The
conpaas.core.expose module provides a python decorator (@expose) that can be used to expose the http methods that
the agent server dispatches. By using this decorator, a dictionary containing methods for http requests GET, POST
or UPLOAD is filled in behind the scenes. This dictionary is used by the built-in server in the conpaas.core package
to dispatch the HTTP requests. The module conpaas.core.http contains some useful methods, like HttpJsonResponse
and HttpErrorResponse that are used to respond to the HTTP request dispatched to the corresponding method. In this
class we also implemented a method called startup, which only changes the state of the agent. This method could
be used, for example, to make some initializations in the agent. We will describe later the use of the other method,
check_agent_process.

Let’s assume that the manager wants each agent to generate a different string. The agent should be informed about the
string that it has to generate. To do this, we could either implement a method inside the agent, that will receive the
required string, or specify this string in the configuration file with which the agent is started. We opted for the second
method just to illustrate how a service could make use of the config files and also, maybe some service agents/managers
need some information before having been started.

Therefore, we will provide the helloworld-agent.cfg file (see Listing [lst:helloworldcfg]) that will be concatenated to
the default-manager.cfg file. It contains a variable ($STRING) which will be replaced by the manager.

Now let’s implement an http client for this new agent server. See Listing [lst:helloworldagentclient]. This client
will be used by the manager as a wrapper to easily send requests to the agent. We used some useful methods from
conpaas.core.http, to send json objects to the agent server.

Next, we will implement the manager in the same manner: we will write the HelloWorldManager class and place it in
the file conpaas/services/helloworld/manager/manager.py. To make use of the IaaS abstractions, we need to instantiate
a Controller which controls all the requests to the clouds on which ConPaaS is running. Note the lines:

1: self.controller = Controller(config_parser)
2: self.controller.generate_context(’helloworld’)

The first line instantiates a Controller. The controller maintains a list of cloud objects generated from the config_parser
file. There are several functions provided by the controller which are documented in the doxygen documentation of
file controller.py. The most important ones, which are also used in the Hello World service implementation, are:
generate_context (which generates a template of the contextualization file); update_context (which takes the contextu-
alization template and replaces the variables with the supplied values); create_nodes (which asks for additional nodes
from the specified cloud or the default one) and delete_nodes (which deletes the specified nodes).

Note that the create_nodes function accepts as a parameter a function (in our case check_agent_process) that tests if
the agent process started correctly in the agent VM. If an exception is generated during the calls to this function for a
given period of time, then the manager assumes that the agent process didn’t start correctly and tries to start the agent
process on a different agent VM.

3.2. Scripts and config files directory structure 23

ConPaaS Documentation, Release 1.3.1

We can also implement a client for the manager server (see Listing [lst:helloworldmanagerclient]). This will allow us
to use the command line interface to send requests to the manager, if the frontend integration is not available.

The last step is to register the new service to the conpaas core. One entry must be added to file con-
paas/core/services.py, as it is indicated in Listing [lst:helloworldservices]. Because the Java and PHP services use
the same code for the agent, there is only one entry in the agent services, called web which is used by both webser-
vices.

3.2.2 Integrating the new service with the frontend

So far there is no easy way to add a new frontend service. Each service may require distinct graphical elements. In
this section we explain how the Hello World frontend service has been created.

3.3 Manager states

As you have noticed in the Hello World manager implementation, we used some standard states, e.g. INIT, ADAPT-
ING, etc. By calling the get_service_info function, the frontend knows in which state the manager is. Why do we
need these standardized stated? As an example, if the manager is in the ADAPTING state, the frontend would know
to draw a loading icon on the interface and keep polling the manager.

3.4 Files to be modified

Several lines of code must be added to the two files above for the new service to be recognized. If you look inside
these files, you’ll see that knowing where to add the lines and what lines to add is self-explanatory.

3.5 Files to be added

24 Chapter 3. Internals

INDEX

C
CONPAAS_CONF_DIR, 5

D
DIRECTOR_URL, 2, 4

E
environment variable

CONPAAS_CONF_DIR, 5
DIRECTOR_URL, 2, 4
OTHER_CLOUDS, 3
VPN_BASE_NETWORK, 3
VPN_BOOTSTRAP_NODES, 4
VPN_NETMASK, 3
VPN_SERVICE_BITS, 3

O
OTHER_CLOUDS, 3

V
VPN_BASE_NETWORK, 3
VPN_BOOTSTRAP_NODES, 4
VPN_NETMASK, 3
VPN_SERVICE_BITS, 3

25

	Installation
	Director installation
	Command line tool installation
	Frontend installation
	Creating A ConPaaS Services VM Image
	ConPaaS on Amazon EC2
	ConPaaS on OpenNebula

	User Guide
	Usage overview
	Tutorial: hosting WordPress in ConPaaS
	The PHP Web hosting service
	The Java Web hosting service
	The MySQL database service
	The Scalarix key-value store service
	The MapReduce service
	The TaskFarm service
	The XtreemFS service
	The HTC service

	Internals
	ConPaaS directory structure
	Scripts and config files directory structure
	Manager states
	Files to be modified
	Files to be added

	Index

